Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T21:48:26.725Z Has data issue: false hasContentIssue false

AMS Radiocarbon Dating of Bones at LSCE

Published online by Cambridge University Press:  18 July 2016

N Tisnérat-Laborde*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
H Valladas
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
E Kaltnecker
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
M Arnold
Affiliation:
Gif-sur-Yvette Tandetron facility, UMS 2004, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we explain our routine pretreatment of bone for radiocarbon dating by accelerator mass spectrometry (AMS), based on the specific reaction between amino acids and ninhydrin described by Nelson (1991). The values and uncertainties of the total system background are presented as a function of the carbon sample mass and the reliability of this method is discussed.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Ajie, HO, Kaplan, IR, Hauschka, PV, Kirner, D, Slota, PJ, Taylor, J, Taylor, RE. 1992. Radiocarbon dating of bone osteocalcin: isolating and characterizing a non-collagen protein. Radiocarbon 34(3):296305.Google Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431–51.Google Scholar
Ambrose, SH. 1993. Isotopic analysis of paleodiets: methodological and interpretive considerations. In: Sandford, MK, editor. Investigations of ancient human tissue. Amsterdam: Gordon and Breach Science Publishers. p 59130.Google Scholar
Arnold, JR, Libby, WF. 1951. Radiocarbon dates. Science 113:111–20.Google Scholar
Arnold, M, Bard, E, Maurice, P, Valladas, H, Duplessy, JC. 1989. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report and study of isotopic fractionation in the sputter ion source. Radiocarbon 31:284–91.Google Scholar
Bocherens, H, Billiou, D, Patou-Mathis, M, Bonjean, D, Otte, M, Mariotti, A. 1997. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quaternary Research 48:370–80.CrossRefGoogle Scholar
Bocherens, H, Tresset, A, Wiedmann, F, Giligny, F, Lafage, F, Lanchon, Y, Mariotti, A. 1997. Diagenetic evolution of mammal bones in two French Neolithic sites. Bulletin de la Société géologique France 168:5.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.Google Scholar
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B123:208–13.Google Scholar
Clot, A. 1987. La grotte de Gerde (Hautes-Pyrénées), site préhistorique et paléontologique. Tarbes: Société Ramond.Google Scholar
Debenham, NC. 1998. Thermoluminescence dating of stalagmitic calcite from la grotte Scladina at Sclayn (Namur). In: Otte, M, Patou-Mathis, M, Bonjean, D, editors. Recherches aux grottes de Sclayn, Volume 2. Liège: L'Archéologie ERAUL:3943.Google Scholar
Delpech, F, Rigaud, J-P. 2001. Quelques exemples sur l'apport des datations en archéologie préhistorique. In: Barrandon, J-N, Guibert, P, Michel, V, editors. Datation XXIe rencontres internationales d'archéologie et d'histoire d'Antibes. Antibes: APDCA. p 315–31.Google Scholar
Fontugne, MR, Tisnérat-Laborde, N. Forthcoming. Une séquence du Paléolithique inférieur au Paléolithique récent dans les Balkans: La grotte de Kozarnika à Orechets (Nord ouest de la Bulgarie). Datations radiocarbone. Google Scholar
Gillespie, R, Hedges, REM, Humm, MJ. 1986. Routine AMS dating of bone and shell proteins. Radiocarbon 28(2A):451–6.CrossRefGoogle Scholar
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bone by accelerator mass spectrometry. Journal of Archaeological Science 11:165–70.Google Scholar
Gurfinkel, DM. 1987. Comparative study of the radiocarbon dating different bone collagen preparations. Radiocarbon 29(1):4552.Google Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford Accelerator Mass Spectrometry Facility: technical developments in routine dating. Archaeometry 31(2):99113.Google Scholar
Hedges, REM, Millard, AR. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22:201–9.Google Scholar
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the treatment of bone for radiocarbon dating by AMS. Radiocarbon 34(3):279–91.CrossRefGoogle Scholar
Kirner, DL, Taylor, RE, Southon, JR. 1995. Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon 37(2):697704.Google Scholar
Kretschmer, W, Anton, G, Benz, M, Blasche, S, Erler, G, Finckh, E, Fischer, L, Kerscher, H, Kotva, A, Klein, M, Leigart, M, Morgenroth, G. 1998. The Erlangen AMS Facility and its application in 14C sediment and bone dating. Radiocarbon 40(1):231–8.Google Scholar
Law, IA, Hedges, REM. 1989. A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. Radiocarbon 31(3):247–53.CrossRefGoogle Scholar
Long, A, Wilson, AT, Ernst, RD, Gore, BH, Hare, PE. 1989. AMS radiocarbon dating of bones at Arizona. Radiocarbon 31(3):231–8.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241–2.Google Scholar
Moore, S, Stein, WH. 1950. Photometric ninhydrin method for use in the chromatography of amino acids. Journal of Biological Chemistry 176:367–88.Google Scholar
Nelson, DE. 1991. A new method for carbon isotopic analysis of protein. Science 251:552–4.Google Scholar
Redvers-Newton, NA, Coote, GE. 1994. Bone pretreatments for radiocarbon dating: a study incorporating AMS dating and ion beam analysis. Nuclear Instruments and Methods in Physics Research B 92:270–3.Google Scholar
Roque, C, Guibert, P, Vartanian, E, Bechtel, F, Oberlin, C, Evin, J, Mercier, N, Valladas, H, Texier, J-P, Rigaud, J-P, Delpech, F, Cleyet-Merle, J-J, Turq, A. 2001. Une expérience de croisement de datations TL/14C pour la séquence solutréenne de Laugerie-Haute, Dordogne. In: Barrandon, J-N, Guibert, P, Michel, V, editors. Datation XXIe rencontres internationales d'archéologie et d'histoire d'Antibes. Antibes: APDCA. p 217–32.Google Scholar
Schleicher, M, Grootes, PM, Nadeau, M-J, Schoon, A. 1998. The carbonate 14C background and its components at the Leibniz AMS Facility. Radiocarbon 40(1):8593.Google Scholar
Stafford, TW JR., Brendel, K, Duhamel, RC. 1988. Radiocarbon, 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochemica at Cosmochimica Acta 52:2257–67.Google Scholar
Tisnérat-Laborde, N, Poupeau, J-J, Tannau, J-F, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate sample. Radiocarbon 43(2A):299304.Google Scholar
van Klinken, GJ, Mook, WG. 1990. Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2):155–64.CrossRefGoogle Scholar
Vogel, JS, Nelson, DE, Southon, JR. 1987. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29(3):323–33.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar