Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:22:05.210Z Has data issue: false hasContentIssue false

AMS 14C and Chemical Composition of Atmospheric Aerosols from Mexico City

Published online by Cambridge University Press:  03 February 2017

C Solís*
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, DF, 01000, Mexico
V Gómez
Affiliation:
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior de Cd. Universitaria, México, DF, 04510, Mexico
E Ortíz
Affiliation:
Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, DF, 02200, Mexico
E Chávez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, DF, 01000, Mexico
J Miranda
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, DF, 01000, Mexico Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior de Cd. Universitaria, México, DF, 04510, Mexico
J Aragón
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, DF, 01000, Mexico
M A Martínez
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF, 04510, Mexico
T Castro
Affiliation:
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior de Cd. Universitaria, México, DF, 04510, Mexico
O Peralta
Affiliation:
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Circuito Exterior de Cd. Universitaria, México, DF, 04510, Mexico
*
*Corresponding author. Email: [email protected].

Abstract

Air pollution in Mexico City, which has more than 22 million inhabitants, continues to be one of the main environmental issues. Aerosol samples (PM10) collected in Mexico City and the city of Cuernavaca (a clean reference site) have been characterized using different techniques. This multifaceted approach addresses the source apportionment of the carbonaceous matter in PM10, as well as the airborne elements and ions. Accelerator mass spectrometry (AMS) radiocarbon analysis of total carbon, X-ray fluorescence (XRF), and ion chromatography were performed on aerosols collected at three sites in Mexico City and one site in Cuernavaca, during 2 months of the cold-dry season (November–December) in 2012. New results obtained for Mexico City are compared with previous reports. Average levels of PM10 were higher in Mexico City sites (43.3–60.8 μg/m3) than in Cuernavaca (32.2 μg/m3). According to the material balance, PM10 collected in Mexico City had a lower contribution of crustal material (31.2–36.8%) than Cuernavaca (46.9%). Average contributions of particulate carbonaceous matter to PM10 were similar in both cities, but much higher contributions of mineral salts, trace elements, and ions were observed in Mexico City in comparison to Cuernavaca. Total organic carbon (OC) and elemental carbon (EC) contents were higher in aerosols from Mexico City than those from Cuernavaca. The temporal variation results showed that within all locations studied the OC concentration was high compared to the EC. Results from a theoretical calculation of fossil carbon (FC) and biogenic carbon (BC) concentrations showed that FC and BC levels depend on the site: at Mexico City sites, FC was equal or higher than BC. At Cuernavaca, BC was always higher than FC.

Type
Rapid Event in the Natural Atmospheric 14C Content
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

Aiken, AC, Cubison, MJ, Huffman, JA, DeCarlo, PF, Ulbrich, I, Docherty, K, Sueper, DT, Jimenez, JL. 2007. Organic aerosol analysis with the aerodyne high resolution time-of flight aerosol mass spectrometer (HR-ToF-AMS) at T0 in Mexico City during MILAGRO/MCMA-2006. American Association of Aerosol Research, Reno, NV.Google Scholar
Aiken, AC, De Foy, B, Wiedinmyer, C, Decarlo, PF, Ulbrich, IM, Wehrli, MN, Jimenez, JL. 2010. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)-Part 2: analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics 10(12):53155341.CrossRefGoogle Scholar
Aldape, F, Flores, J, Flores, A, Retama, OR. 2005. Elemental composition and source identification of PM2.5 particles collected in downtown Mexico City. International Journal of PIXE 15:263.CrossRefGoogle Scholar
Beramendi-Orosco, G, Gonzalez-Hernandez, G, Martinez-Jurado, A, Martinez-Reyes, A, Garcia-Samano, A, Villanueva-Diaz, J, Santos-Arevalo, FJ, Gomez-Martinez, I, Amador-Muñoz, O. 2015. Temporal and spatial variations of atmospheric radiocarbon in the Mexico City metropolitan area. Radiocarbon 57(3):363375.CrossRefGoogle Scholar
Bond, TC, Doherty, SJ, Fahey, DW, Forster, PM, Berntsen, T, DeAngelo, BJ, Zender, CS. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres 118(11):53805552.CrossRefGoogle Scholar
CACDMX (Calidad del aire en la Ciudad de México Informe). 2013. Secretaría de Medio Ambiente. Edición 2014. Access date May 2016. Available at http://www.aire.cdmx.gob.mx/descargas/publicaciones/flippingbook/informe_anual_calidad_aire_2013/#p=1.Google Scholar
Chow, JC, Watson, JG, Edgerton, SA, Vega, E. 2002. Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. Science of the Total Environment 287(3):177201.CrossRefGoogle ScholarPubMed
Edgerton, SA, Bian, X, Doran, JC, Fast, JD, Hubbe, JM, Malone, EL, Shaw, WJ, Whiteman, CD, Zhong, S, Arriaga, JL, Ortiz, E, Ruiz, M, Sosa, G, Vega, E, Limon, T, Guzman, F, Archuleta, J, Bossert, JE, Elliot, SM, Lee, JT, McNair, LA, Chow, JC, Watson, JG, Coulter, RL, Doskey, PV, Gaffney, JS, Marley, NA, Neff, W, Petty, R. 1999. Particulate air pollution in Mexico City: a collaborative research project. Journal of the Air &Waste Management Association 49(10):12211229.Google ScholarPubMed
Espinosa, AA, Reyes-Herrera, J, Miranda, J, Mercado, F, Veytia, MA, Cuautle, M, Cruz, JI. 2012. Development of an X-ray fluorescence spectrometer for environmental science applications. Instrumentation Science & Technology 40(6):603617.CrossRefGoogle Scholar
Gasca, J, Ortiz, E, Castillo, H, Jaimes, JL, González, U. 2004. The impact of liquefied petroleum gas usage on air quality in Mexico City. Atmospheric Environment 38(21):35173527.CrossRefGoogle Scholar
Gómez, V, Solís, C, Chávez, E, Andrade, E, Ortiz, ME, Huerta, A, Aragón, A, Rodríguez-Ceja, M, Martínez, MA, Ortiz, E. 2016. 14C content in aerosols in Mexico City. Nuclear Instruments and Methods in Physics Research B 371:365369.CrossRefGoogle Scholar
Hodzic, A, Jimenez, JL, Prevot, ASH, Szidat, S, Fast, JD, Madronich, S. 2010. Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City? Atmospheric Chemistry and Physics 10:10,997111,016.CrossRefGoogle Scholar
IECEI-ZMVM (Inventario de Emisiones Contaminantes y Efecto Invernadero de la Zona Metropolitana del Valle de México). 2012. Primera Edición. Mexico City: Secretaría de Medio Ambiente.Google Scholar
Klingner, M, Sähn, E. 2008. Prediction of PM10 concentration on the basis of high resolution weather forecasting. Meteorologische Zeitschrift 17(3):263272.CrossRefGoogle Scholar
Knaapen, AM, Borm, PJ, Albrecht, C, Schins, RPF. 2004. Inhaled particles and lung cancer. Part A: mechanisms. International Journal of Cancer 109(6):799809.CrossRefGoogle Scholar
Levin, I, Munnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14C in the atmosphere. Radiocarbon 22(2):379391.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: Determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391:211216.CrossRefGoogle ScholarPubMed
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, L, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO. Tellus B 62(2):2646.CrossRefGoogle Scholar
Marley, NA, Gaffney, JS, Tackett, M, Sturchio, NC, Heraty, L, Martinez, N, Steelman, K. 2009. The impact of biogenic carbon sources on aerosol absorption in Mexico City. Atmospheric Chemistry and Physics 9(5):15371549.CrossRefGoogle Scholar
Martínez-Carrillo, , Solís, C, Isaac-Olive, K, Andrade, E, Beltrán-Hernández, RI, Martínez-Reséndiz, G, Lucho-Constantino, CA. 2010. Atmospheric elemental concentration determined by particle-Induced X-ray emission at Tlaxcoapan in central Mexico, and its relation to Tula industrial-corridor emissions. Microchemical Journal 94(1):4852.CrossRefGoogle Scholar
Molina, LT, Kolb, CE, de Foy, B, Lamb, BK, Brune, WH, Jimenez, JL, Ramos-Villegas, R, Sarmiento, J, Paramo-Figueroa, VH, Cardenas, B, Gutierrez-Avedoy, V, Molina, MJ. 2007. Air quality in North America’s most populous city – overview of the MCMA-2003 campaign. Atmospheric Chemistry and Physics 7:24472473.CrossRefGoogle Scholar
Molina, LT, Madronich, S, Gaffney, JS, Apel, E, de Foy, B, Fast, J, Ferrare, R, Herndon, S, Jimenez, JL, Lamb, B, Osornio-Vargas, AR, Russell, P, Schauer, JJ, Stevens, PS, Volkamer, R, Zavala, M. 2010. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics 10:86978760.CrossRefGoogle Scholar
Molina Center. 2016. Molina Center for Energy and the Environment MCE2. CA. USA. 2014. Access date May 2016. http://www.mce2.org/en/publications.Google Scholar
Mouteva, GO, Czimczik, CI, Fahrni, SM, Wiggins, EB, Rogers, BM, Veraverbeke, S, Xu, X, Santos, GM, Henderson, J, Miller, CE, Randerson, JT. 2015. Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Global Biogeochemical Cycles 29(11):19772000.CrossRefGoogle Scholar
Ortiz, E, Solís, C, Vivier-Bunge, A, Martínez Carrillo, MA, Iuga, C, Lucho Constantino, CA, Beltrán-Hernández, RI. 2011. Identificación de las fuentes emisoras de PM10 en Tlaxcoapan. Hidalgo: estudio de caso, contaminación atmosférica y tecnologías de cero emisiones de carbón, edited by Leopoldo García-Colín Scherer and Juan Rubén Varela Ham. Colegio Nacional and UAM. p 173196.Google Scholar
ProAire (Programa para mejorar la calidad del aire de la ZMVM). 2011–2020. Secretaría del Medio Ambiente y Recursos Naturales. Mexico City.Google Scholar
Querol, X, Pey, J, Minguill, MC. 2008. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmospheric Chemistry and Physics 8:111128.CrossRefGoogle Scholar
Retama, A, Baumgardner, D, Raga, GB, McMeeking, GR, Walker, JW. 2015. Seasonal trends in black carbon properties and co-pollutants in Mexico City. Atmospheric Chemistry and Physics Discussions 15(8):12,53982.Google Scholar
Salcido, A, Sozzi, R, Castro, T. 2003. Least squares variational approach to the convective mixing height estimation problem. Environmental Modelling & Software 18:951957.CrossRefGoogle Scholar
Seinfeld, JH, Pandis, SN. 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley-Interscience.Google Scholar
Solís, C, Chávez-Lomelí, E, Ortiz, ME, Huerta, A, Andrade, E, Barrios, E. 2014. A new AMS facility in Mexico. Nuclear Instruments and Methods in Physics Research B 331:233237.CrossRefGoogle Scholar
Solís, C, Chávez, E, Ortiz, ME, Andrade, E, Ortíz, E, Szidat, S, Wacker, L. 2015. AMS-14C analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters. Nuclear Instruments and Methods in Physics Research B 361:419422.CrossRefGoogle Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Szidat, S. 2009. Radiocarbon analysis of carbonaceous aerosols: recent developments. CHIMIA International Journal for Chemistry 63(3):157161.CrossRefGoogle Scholar
Szidat, S, Jenk, TM, Ga, HW, Synal, H-A, Fisseha, R, Baltensperger, U, Hajdas, I. 2004. Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zurich, Switzerland. Atmospheric Enviroment 38:40354044.CrossRefGoogle Scholar
Takahashi, K, Hirabayashi, M, Tanabe, K, Shibata, Y, Nishikawa, M, Sakamoto, K. 2007. Radiocarbon content in urban atmospheric aerosols. Water Air and Soil Pollution 185(1–4):305310.CrossRefGoogle Scholar
Vega, E, Ruiz, H, Escalona, S, Cervantes, A, Lopez-Veneroni, D, Gonzalez-Avalos, E, Sanchez-Reyna, G. 2011. Chemical composition of fine particles in Mexico City during 2003–2004. Atmospheric Pollution Research 2(4):17.CrossRefGoogle Scholar
Yokelson, RJ, Urbanski, SP, Atlas, EL, Toohey, DW, Alvarado, EC. 2007. Emissions from forest res near Mexico City. Atmospheric Chemistry and Physics, European Geosciences Union 7(21):55695584.CrossRefGoogle Scholar
Zhang, YL, Zotter, P, Perron, N, Prévôt, ASH, Wacker, L, Szidat, S. 2013. Fossil and non-fossil sources of different carbonaceous fractions in fine and coarse particles by radiocarbon measurement. Radiocarbon 55(3):15101520.CrossRefGoogle Scholar