Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:11:00.418Z Has data issue: false hasContentIssue false

Stones, Bones, and Hillfort: Radiocarbon Dating of ķivutkalns Bronze-Working Center

Published online by Cambridge University Press:  09 February 2016

M Oinonen*
Affiliation:
Finnish Museum of Natural History - LUOMUS, University of Helsinki, Finland
A Vasks
Affiliation:
Institute of Latvian History, University of Latvia, Latvia
G Zarina
Affiliation:
Institute of Latvian History, University of Latvia, Latvia
M Lavento
Affiliation:
Department of Philosophy, History, Culture and Art Studies, University of Helsinki, Finland
*
2Corresponding author. Email: [email protected].

Abstract

The Bronze Age site of ķivutkalns with its massive amount of archaeological artifacts and human remains is considered the largest bronze-working center in Latvia. The site is a unique combination of cemetery and hillfort believed to be built on top of each other. This work presents new radiocarbon dates on human and animal bone collagen that somewhat challenge this interpretation. Based on analyses using a Bayesian modeling framework, the present data suggest overlapping calendar year distributions for the contexts within the 1st millennium BC. The carbon and nitrogen isotopic ratios indicate mainly terrestrial dietary habits of studied individuals and nuclear family remains buried in one of the graves. The older charcoal data may be subject to the old-wood effect and the results are partly limited by the limited amount of data and the 14C calibration curve plateau of the 1st millennium BC. Therefore, the ultimate conclusions on contemporaneity of the cemetery and hillfort need to wait for further analyses on the massive amounts of bone material.

Type
Archaeology of Eurasia and Africa
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boettger, T, Haupt, M, Knller, K, Weise, SM, Waterhouse, JS, Rinne, KT, Loader, NJ, Sonninen, E, Jungner, H, Masson-Delmotte, V, Stievenard, M, Guillemin, M, Pierre, M, Pazdur, A, Leuenberger, M, Filot, M, Saurer, M, Reynolds, CE, Helle, G, Schleser, GH. 2007. Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Analytical Chemistry 79(12):4603–12.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):1023–45.CrossRefGoogle Scholar
Denisova, R, Graudonis, J, Gravere, R. 1985. ķivutkalnskij mogilnjik epoki bronzi [The Bronze Age Cemetery Ķivutkalns]. Riga: Zinātne.Google Scholar
Eriksson, G. 2004. Part-time farmers or hard-core sealers? Västerbjers studied by means of stable isotope analysis. Journal of Antropological Archaeology 23(2):135–62.Google Scholar
Eriksson, G. 2006. Stable isotope analysis of human and faunal remains from Zvejnieki. In: Larsson, L, Zagorska, I, editors. Back to the Origin: New Research in the Mesolithic–Neolithic Zvejnieki Cemetery and Environment, Northern Latvia. Lund: Almqvist and Wiksell International. p 183215.Google Scholar
Eriksson, G, Lidén, K. 2013. Dietary life histories in Stone Age Northern Europe. Journal of Anthropological Archaeology 32(3):288302.CrossRefGoogle Scholar
Eriksson, G, Linderholm, A, Fornander, E, Kanstrup, M, Schoultz, P, Olofsson, H, Lidén, K. 2008. Same island, different diet: cultural evolution of food practice on Öland, Sweden, from the Mesolithic to the Roman Period. Journal of Anthropological Archaeology 27(4):520–43.Google Scholar
Fuller, BT, Fuller, JL, Harris, DA, Hedges, REM. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. American Journal of Physical Anthropology 129(2):279–93.CrossRefGoogle ScholarPubMed
Graudonis, J. 1989. Nocietinātās apmetnes Daugavas lejtecē [The Fortified Settlements in the Lower Daugava]. Riga: Zinātne.Google Scholar
Grigalavičiene, E, Merkevičius, A. 1980. Drevneishije metallicheskije izdelija v Litve (II-I tysiacheletia do n.e.) [Ancient Bronzeware in Lithuania (II–I millennia B. C.]. Vilnius: Mokslas.Google Scholar
Lang, L. 2007a. The Bronze and Early Iron Ages in Estonia. Estonian Archaeology 3. Tartu: Tartu University Press.Google Scholar
Lang, L. 2007b. Baltimaade pronksi- ja rauaaeg. Tartu: Tartu likooli kirjastus.Google Scholar
Lavento, M. 2001. Textile ceramics in Finland and on the Karelian Isthmus. Nine Variations and Fugue on a Theme of C. F. Meinander. Finska Fornminnesfreningens Tidskrift 109. Sastamala: Vammalan Kirjapaino Oy.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.Google Scholar
Luoto, J. 1984. Liedon Vanhanlinnan mkilinna. Finska Fornminnesfreningens Tidskrift 87. Sastamala: Vammalan Kirjapaino Oy.Google Scholar
Oinonen, M, Pesonen, P, Tallavaara, M. 2010. Archaeological radiocarbon dates for studying the population history in eastern Fennoscandia. Radiocarbon 52(2): 393407.Google Scholar
Pesonen, P, Oinonen, M, Carpelan, C, Onkamo, P. 2012. Early Subneolithic ceramic sequences in eastern Fennoscandia—a Bayesian approach. Radiocarbon 54(3–4):661–76.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–50.Google Scholar
Schoeninger, MJ, DeNiro, MJ. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48(4):625–39.Google Scholar
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1986. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.Google Scholar
Stenberger, M. 1979. Det forntida Sverige. Tredhe upplagen. Lund: Awe/Gebers.Google Scholar
Vandkilde, H, Rahbek, U, Rasmussen, K. 1996. Radiocarbon dating and the chronology of Bronze Age Southern Scandinavia. Acta Archaeologica 67:183–98.Google Scholar
Vankina, L. 1960. Noveishie nahodki epokhi bronzi na territorii Latviiskoi SSR [New finds of the Bronze Age in the territory of Latvia]. Sovetskaia Arheologia 3:153–61.Google Scholar
Vasks, A. 1994. Brikulu nocietinātā apmetne. Lubāna zemiene vēlajā bronzas un dzelzs laikmetā (1000. g. pr. Kr. – 1000. g. pēc Kr). [Brikuli Fortified Settlement. The Lubāna Lowlands in the Late Bronze and Iron Age (1000 BC – 1000 AD)]. Riga: Preses Nams Publishers.Google Scholar
Vasks, A. 2003. Akmeñu krāvuma kapulauki Kurzemē. [Tarand (Stone setting) cemeteries in Kurzeme]. Arheoloǵija un etnogrāfia 21:141–53.Google Scholar
Vasks, A. 2010. Latvia as part of a sphere of contacts in the Bronze Age. Archaeologia Baltica 13:153–60.Google Scholar