Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T20:22:13.307Z Has data issue: false hasContentIssue false

Selecting the Most Reliable 14C Dating Material Inside Mortars: the Origin of the Padua Cathedral

Published online by Cambridge University Press:  13 March 2019

Anna Addis*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Italy Centro Interdipartimentale di Ricerca per lo Studio dei Materiali Cementizi e dei Leganti Idraulici (CIRCe), Università di Padova, Italy
Michele Secco
Affiliation:
Centro Interdipartimentale di Ricerca per lo Studio dei Materiali Cementizi e dei Leganti Idraulici (CIRCe), Università di Padova, Italy Dipartimento di Ingegneria Civile, Edile ed Ambientale, Università di Padova, Italy
Fabio Marzaioli
Affiliation:
Dipartimento di Matematica e Fisica, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
Gilberto Artioli
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Italy Centro Interdipartimentale di Ricerca per lo Studio dei Materiali Cementizi e dei Leganti Idraulici (CIRCe), Università di Padova, Italy
Alexandra Chavarría Arnau
Affiliation:
Dipartimento dei Beni Culturali, Università di Padova, Italy
Isabella Passariello
Affiliation:
Laboratorio CIRCE e INNOVA, Caserta, Italy
Filippo Terrasi
Affiliation:
Dipartimento di Matematica e Fisica, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy Laboratorio CIRCE e INNOVA, Caserta, Italy
Gian Pietro Brogiolo
Affiliation:
Dipartimento dei Beni Culturali, Università di Padova, Italy
*
*Corresponding author. Email: [email protected].

Abstract

In order to radiocarbon (14C) date a building, several components of the mortar could be used, such as the mortar binder, the lime lumps, the charcoal particles and shell fragments eventually present among the aggregates. In particular, the mortar binder requires a purification treatment in order to separate it from other sources of carbon, which could change the 14C signature of the binder invalidating the dating process. Here, we present the application of the Cryo2Sonic method to 14C dating of the ancient building structures unearthed during excavation at the Padua Cathedral complex. The dated samples were pretreated by using Cryo2Sonic method and the improved Cryo2Sonic version 2.0, recently developed by introducing additional steps such as centrifugation of the mortar suspension and gravimetric sedimentation of the binder fractions. The Cryo2Sonic version 2.0 relies heavily on the characterization of the mortar and of the purified binder fractions, allowing the isolation of a reliable 14C datable mortar fraction. Through this new method, the 14C dating of different ancient structures excavated next to the Padua Cathedral allow to identify the first religious complex of the city of Padua (3rd–4th centuries AD).

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Artioli, G, Secco, M, Addis, A, Bellotto, M. 2017. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In: Pöllmann H, editor. Cementitious materials. Composition, properties, application. De Gruyter: in press.Google Scholar
Canci, A, Marinato, M, Zago, M. 2017. Le aree cimiteriali: studio bioarcheologico. In: Chavarría Arnau, editor. Ricerche sul centro episcopale di Padova. Scavi 2011-2012, Mantova, SAP s.r.l.: 131–150.Google Scholar
Chavarría Arnau, A. 2017. La cristianizzazione di Padova e le origini del complesso episcopale. In: Chavarría Arnau A, editor. Ricerche sul centro episcopale di Padova. Scavi 2011–2012, Mantova, SAP s.r.l.: 367–372.Google Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestone in 14C dating of mortar. Radiocarbon 51(3):987993.Google Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F., Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples. Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Secco, M, Boaretto, E, Moreau, C, Guibert, P, Urbanova, P, Czernik, J, Goslar, T, Caroselli, M. 2017. Mortar dating methodology: Intercomparison of available methods. Radiocarbon 59(6):18591871.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the Medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Marzaioli, F, Borriello, G, Passariello, I, Lubritto, C, De Cesare, N, D’Onofrio, A, Terrasi, F. 2008. Zinc reduction as an alternative method for AMS radiocarbon dating: Process optimization at CIRCE. Radiocarbon 50(1):139149.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83:20382045.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, IAQ, Terrasi, F. 2013, Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy). NIMB 294:246251.Google Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Zurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating the binding materials. Geochronometria 40:3341.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.Google Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, A. 2005. Application of radiocarbon method for dating of lime mortars. Journal on Methods and Applications of Absolute Chronology, GEOCHRONOMETRIA 24:109115.Google Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857866.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, S, Terrasi, F. 2013. 14C mortar dating: The case of the medieval Shayzar Citadel, Syria. Radiocarbon 55(2):514525.Google Scholar
Passariello, I, Marzaioli, F, Lubritto, C, Rubino, M, d’Onofrio, A, de Cesare, N, Borriello, G, Casa, G, Palmieri, A, Rogalla, D, Sabbarese, C, Terrasi, F. 2007. Radiocarbon sample preparation at the CIRCE AMS laboratory in Caserta, Italy. Radiocarbon 49(2):225232.Google Scholar
Ramsey, CB, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Regev, L, Eckmeier, E, Mintz, E, Weiner, S, Boaretto, E. 2011. Radiocarbon concentrations of wood ash calcite: potential for dating. Radiocarbon 53(1):117127.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk, C, Ramsey, , Grootes, PM, Guilderson, TP, Haflidason, H., Hajdas, J., Hattž, C, Heaton, TJ, Hoffmann, DI, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013, IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rietveld, H. 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2:6571.Google Scholar
Rozansky, K, Stichler, W, Gonfiantini, R, Kromer, B, van der Plicht, J. 2002. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506519.Google Scholar
Schiffer, MB. 1986. Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13(1):1330.Google Scholar
Secco, M, Addis, A, Artioli, G. 2016. Characterization of lime-stabilized earthen mortars from historic masonry structures. In Modena C, da Porto F, Valluzzi MR, editors. Proceedings of IB2MAC 2016 – 16th International Brick and Block Masonry Conference, Padova, 26–30 June 2016. CRC Press/Balkema. p. 1889–1896.Google Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43(2A):271273.Google Scholar
Terrasi, F, Rogalla, D, De Cesare, N, D’Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rubino, M, Sabbarese, C, Casa, G, Palmieri, A, Gialanella, I, Imbriani, G, Roca, V, Romano, M, Sundquist, M, Loger, R. 2007. A new AMS facility in Caserta/Italy. Nuclear Instruments and Methods in Physics Research B 259:1417.Google Scholar
Terrasi, F, De Cesare, N, D’Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rogalla, D, Sabbarese, C, Borriello, G, Casa, G, Palmieri, A. 2008. High precision 14C AMS at CIRCE. Nuclear Instruments and Methods in Physics Research B 266:22212224.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1983a. Radiocarbon dating of old mortars. In Mook WG and Waterbolk HR editors. 14C and Archaeology Proceedings, PACT 8:337343.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Marechal, J. 1983b. A further step in the radiocarbon dating of old mortars. Bulletin Van Het Kon Inst. Voor het Kunstpatrimonium XIX:155171.Google Scholar
Van Strydonck, M, Dupas, M. 1991. The classification and dating of lime mortars by chemical analysis and radiocarbon dating: A review. BAR International Series 574:543.Google Scholar