Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-01T22:41:05.309Z Has data issue: false hasContentIssue false

Royal burials and chariots from Sinauli (Uttar Pradesh, India): Radiocarbon dating and isotopic analysis based inferences

Published online by Cambridge University Press:  30 September 2024

Shalini Sharma*
Affiliation:
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, P.R. China Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India
Anil K Pokharia
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India
S K S Gahlaud
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India
Nikhil Patel
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India
S K Manjul
Affiliation:
Archaeological Survey of India, 24 Tilak Marg, New Delhi-110001, Delhi, India
Ruchita Yadav
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India Department of Botany, D.G.P.G. College (Affiliated to CSJMU), Kanpur-200801, India
Rajesh Agnihotri
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, Uttar Pradesh, India
*
Corresponding author: Shalini Sharma; Email: [email protected]

Abstract

For the first time in the Indian subcontinent, a series of royal burials with chariots have been recovered from the Chalcolithic period at the archaeological site Sinauli (29°8′28″N; 77°13′1″E), Baghpat district, western Uttar Pradesh, India. Eight burials were excavated from the site; among them a royal burial with copper decorated legged coffin (lid with a series of anthropomorphic figures) and headgear has also been recovered. Among these remarkable discoveries, three full-sized chariots made of wood and copper, and a sword with a wooden hilt, made this site unique at historical ground. These cultural findings signify that the ancients from this place were involved in warfare. All these recovered exclusive antiquities also proved the sophistication and the high degree of craftsmanship of the artisans. According to the 14C radiocarbon dating and recovered material culture, the site date back to 4000 yr BP (∼2000 BCE) and is thought to belong to Ochre-Coloured Pottery (OCP)/Copper Hoard culture. This culture was believed to develop in the Ganga-Yamuna Doab and was contemporary to the late phase of the Indus civilization. Altogether, the findings indicate that the time period of this culture is plausibly contemporary to Late Indus, Mesopotamian and Greece civilizations.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agnihotri, R, Kumar, R, Prasad, MVSN, Sharma, C, Bhatia, SK and Arya, BC (2014) Experimental setup and standardization of a continuous flow stable isotope mass spectrometer for measuring stable isotopes of carbon, nitrogen and sulfur in environmental samples. MAPAN-Journal Metrology Society of India 29(3), 195205.Google Scholar
Agrawal, DP (1984) Archaeology in India. New Delhi: Select Book Service Syndicate, 156.Google Scholar
Al Jafri, NH (2017) Proto-Historic Culture of India revisiting Ochre Coloured Pottery Culture. Journal Global Values VIII(2/11), 8187.Google Scholar
Ambrose, SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.CrossRefGoogle Scholar
Ansari, S (2009) The Ochre Coloured Pottery Culture: A consideration of the evidence. Dissertation submitted for the Award of the Degree of Master of Philosophy in History. Aligarh, Centre of Advanced Study, Department of History, Aligarh Muslim University. 182 p.+XI pl.Google Scholar
Arbuckle, CJ (2018) A Social History of Coffins and Carpenters in Ancient Egypt. PhD dissertation, University of California, Los Angeles.Google Scholar
Atre, S (1987) Lady of Beasts—the Harappan Goddess. Puratattva: Bulleting of the Indian Archaeological Society (1985–86) 6, 714.Google Scholar
Bronk Ramsey, C (2017) Methods for summarizing radiocarbon datasets. Radiocarbon 59(6), 18091833.CrossRefGoogle Scholar
Dodson, A (2015) Ancient Egyptian Coffins: The Medelhavsmuseet Collection. Stockholm: National Museums of World Culture, 46–47.Google Scholar
Dunbar, E, Cook, GT, Naysmith, P, Tripney, BG and Xu, S (2016) AMS 14C dating at the Scottish Universities Environmental Research Centre (SUERC) radiocarbon dating laboratory. Radiocarbon 58(1), 923. doi: 10.1017/RDC.2015.2.CrossRefGoogle Scholar
Fuller, DQ (2018) Rice: A user guide for archaeologists. From the UCL Early Rice Project, Version 1.0. University College London.Google Scholar
Indian Archaeology Review (IAR) (1954). Archaeological Survey of India. New Delhi: Indian Archaeology Review.Google Scholar
Kenoyer, JM and Meadow, RH (2016) Excavations at Harappa, 1986–2010. In Schug GR and Walimbe SR (eds), A Companion to South Asia in the Past, 145–168. doi: 10.1002/9781119055280.ch10.CrossRefGoogle Scholar
Knipper, C, Peters, D, Meyer, C, Maurer, A-F, Muhl, A, Schöne, BR and Alt, KW (2013) Dietary reconstruction in Migration Period central Germany: A carbon and nitrogen isotope study. Archaeological and Anthropological Sciences 5, 1735.CrossRefGoogle Scholar
Lal, BB (1951) Further copper hoards from Gangetic basin and a review of the problem. Ancient India 7, 2039.Google Scholar
Lal, BB (1971) A note on the excavation at Saipai. Pumtattva 5, 4649.Google Scholar
Lal, BB (1979) Kalibangan and the Indus Civilization. In Agrawal, DP and Chakrabati, DK (eds), Essays in Indian Protohistory. Delhi: B.R. Publishing Corporation, 6797.Google Scholar
Macko, SA, Engel, MH, Andrusevich, V, Lubec, G, O’Connell, TC and Hedges, RE (1999) Documenting the diet in ancient human populations through stable isotope analysis of hair. Philosophical Transactions of the Royal Society B: Biological Sciences 354(1379), 6575. doi: 10.1098/rstb.1999.0360.CrossRefGoogle ScholarPubMed
Manjul, SK and Manjul, A (2018) Recent excavation at Sanauli, district Bagpat UP: A landmark of Indian Archaeology. Puratattva 48, 220225.Google Scholar
Martin, AC and Barkley, WD (1961) Seed Identification Manual. University of California Press.CrossRefGoogle Scholar
Muller, FM (1859) History of Ancient Sanskrit Literature. London.Google Scholar
Nair, DK (2012) The Ochre Coloured Pottery: Reconsidering issues and problems. Proceedings of the Indian History Congress 73, 11611171.Google Scholar
Pokharia, AK, Kharakwal, JS, Rawat, RS, Osada, T, Nautiyal, CM and Srivastava, A (2011) Archaeobotany and archaeology at Kanmer, a Harappan site in Kachchh, Gujarat: Evidence for adaptation in response to climatic variability. Current Science 100, 18331846.Google Scholar
Rao, SR (1973) Lothal and the Indus Civilization. New York: Asia Pub. House.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM and van der Plicht, J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4), 18691887.CrossRefGoogle Scholar
Sawlani, R, Agnihotri, R and Sharma, C (2021) Chemical and isotopic characteristics of PM2.5 over New Delhi from September 2014 to May 2015: Evidences for synergy between air-pollution and meteorological changes. Science of the Total Environment. doi: 10.1016/j.scitotenv.2020.142966.CrossRefGoogle Scholar
Sen, SN (1971) A Survey of source materials. In Bose, DM, Se SN and Subbarayappa (eds), A Concise History of Science in India. New Delhi: Indian National Science Academy, 157.Google Scholar
Sharma, DV, Nauriyal, KC and Prabhakar, VN. (2005) Excavations at Sanauli 2005-06: A Harappan Necropolis in the Upper Ganga-Yamuna Doab. Puratattva 36, 166179.Google Scholar
Stuiver, M and Polach, HA (1977) Discussion: Reporting of 14C data. Radiocarbon 19(3), 355363.CrossRefGoogle Scholar
Stuiver, M and Reimer, PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1), 215230.CrossRefGoogle Scholar
Tilak, BG (1893) The Orion into the Antiquity of Vedas. Bombay.Google Scholar
Touzeau, A, Amiot, R, Blichert-Toft, J, Flandrois, JP, Fourel, F, Grossi, V and Lécuyer, C (2014) Diet of ancient Egyptians inferred from stable isotope systematics. Journal of Archaeological Science 46,114124.CrossRefGoogle Scholar
Wheeler, REM (1947) Harappa 1946: The defences and cemetery R-37. Ancient India 3, 58130.Google Scholar
Winternitz, M (1959) A History of Indian Literature. Calcutta: Calcutta University, 1–3.Google Scholar
Supplementary material: File

Sharma et al. supplementary material 1

Sharma et al. supplementary material
Download Sharma et al. supplementary material 1(File)
File 834.2 KB
Supplementary material: File

Sharma et al. supplementary material 2

Sharma et al. supplementary material
Download Sharma et al. supplementary material 2(File)
File 15 KB
Supplementary material: File

Sharma et al. supplementary material 3

Sharma et al. supplementary material
Download Sharma et al. supplementary material 3(File)
File 14 KB