Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T15:33:13.305Z Has data issue: false hasContentIssue false

Refining the Sarliève Paleolake (France) Neolithic Chronology by Combining Several Radiocarbon Approaches

Published online by Cambridge University Press:  09 February 2016

Christine Hatté*
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, UMR CEA-CNRS-UVSQ 8212, Domaine du CNRS, bâtiment 12, 91198 Gif-sur-Yvette Cedex, France
Jean-Gabriel Bréhéret
Affiliation:
Université François-Rabelais de Tours, Laboratoire des GéoHydrosystèmes Continentaux, E.A 6293 GéHCo, Faculté des Sciences et Techniques, Parc Grandmont, 37200 Tours, France
Jérémy Jacob
Affiliation:
Institut des Sciences de la Terre d'Orléans, Université d'Orléans, ISTO, UMR 7327, 45071, Orléans, France; CNRS/INSU, ISTO, UMR 7327, 45071 Orléans, France; BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
Jacqueline Argant
Affiliation:
LAMPEA-UMR 7269-CNRS, MMSH, 13094 Aix-en-Provence Cedex 2, France
Jean-Jacques Macaire
Affiliation:
Université François-Rabelais de Tours, Laboratoire des GéoHydrosystèmes Continentaux, E.A 6293 GéHCo, Faculté des Sciences et Techniques, Parc Grandmont, 37200 Tours, France
*
2Corresponding author. Email: [email protected].

Abstract

Dating sedimentary series spanning the past few tens of thousands of years is often problematic due to the quality of radiocarbon data obtained from organic matter (OM), including bulk OM. This problem recently arose when establishing the chronology of a sediment infill at the Sarliève paleolake (French Massif Central). In the studied section of the cores that covers the Neolithic, Ruppia seeds yielded consistent ages for the lower part (7195 ± 75 to 6050 ± 60 yr BP). A reservoir age of 82 ± 42 14C yr was estimated through the comparison of ages derived from charcoal, Ruppia seeds, and charophyte oogonia sampled on a single level. The upper part of the cores lacks macrofossils and bulk OM dating yields unusable data because of a significant contribution of aged OM derived from the Oligocene substratum in the catchment. We therefore performed dating of lipids extracted from the sediments. The age of the lipids was 2880 ± 30 yr BP near the top of the section, i.e. much younger than the age estimated from previous correlations based on pollen assemblages. These new data call into question previous paleoenvironmental interpretations. The combined dating methodology used for the Neolithic series of Sarliève is a rather uncommon approach that may help to refine chronologies of Holocene sedimentary series.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argant, J, Cubizolle, H. 2005. L'évolution holocène de la végétation des monts de la Madeleine, du Forez, du Livradois et du Pilat (Massif Central oriental, France). L'apport d'une nouvelle série d'analyses palynologiques. Quaternaire 16(2):119–42.Google Scholar
Argant, J, Lopez-Saez, JA. 2004. L'occupation humaine du bassin de Sarliève depuis le Néolithique d'après la palynologie et l'étude des microfossiles non polliniques., In: Actes des 5e Rencontres méridionales de Préhistoire récente Auvergne et Midi. Clermont-Ferrand, 8–9 November 2002. Préhistoire du Sud-Ouest, supplement 9. p 2534.Google Scholar
Arnold, M, Bard, E, Maurice, P, Duplessy, JC. 1987. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report. Nuclear Instruments and Methods in Physics Research B 29(1–2):635–45.Google Scholar
Arnold, M, Bard, E, Maurice, P, Valladas, H, Duplessy, JC. 1989. 14C dating with the Gif-sur-Yvette Tandetron accelerator: status report and study of isotopic fractionation in the sputter ion source. Radiocarbon 31(3):284–91.CrossRefGoogle Scholar
Aubert, M, Bouiller, R, Camus, G, Cochet, A, D'Arcy, D, Giot, D, Jeambrun, M, Roche, A, Bonhommet, N. 1973. Clermont-Ferrand, Carte géologique de la France à 1/50 000, XXV-31. Orléans: Bureau de Recherches Géologiques et Minières, Service Géologique National. 64 p.Google Scholar
Beer, S, Axelson, L, Björk, M. 2006. Modes of photosynthetic bicarbonate utilisation in seagasses, and their possible roles in adaptation to specific habitats. Biologia Marina Mediterranea 13:37.Google Scholar
Bornand, M, Callot, G, Favrot, JC, Servat, E. 1968. Les sols du Val d'Allier. Montpellier: INRA Service d'Etude des Sols. 220 p.Google Scholar
Bréhéret, JG, Macaire, JJ, Fleury, A, Fourmont, A, Soulié-Märsche, I. 2003. Indices de confinement dans les dépôts lacustres holocènes de Sarliève (Limagne, France). Comptes Rendus Geoscience 335:479–85.Google Scholar
Bréhéret, JG, Fourmont, A, Macaire, JJ, Négrel, P. 2008. Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55(3):557–78.Google Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.Google Scholar
de Beaulieu, J-L, Pons, A, Reille, M. 1988. Histoire de la flore et de la végétation du Massif Central (France) depuis la fin de la dernière glaciation. Cahiers de Micropaléontologie 3:536.Google Scholar
Disnar, JR, Stefanova, M, Bréhéret, JG, Macaire, JJ. 2011 Microbial mat development and dolomite formation under pre-evaporitic conditions during the Atlantic in a temperate area: the Sarliève Lake (French Massif Central). Organic Geochemistry 42(9):1089–98.Google Scholar
Eglinton, TI, Benitez-Nelson, BC, Pearson, A, McNichol, AP, Bauer, JE, Druffel, ERM. 1997. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277(5327):796–9.Google Scholar
Fontana, SL. 2005. Holocene vegetation history and palaeoenvironmental conditions on the temperate Atlantic coast of Argentina, as inferred from multi-proxy lacustrine records. Journal of Paleolimnology 34(4):445–69.Google Scholar
Fourmont, A. 2005. Quantification de l'érosion et de la sédimentation dans le bassin de Sarliève (Massif Central, France) au Tardiglaciaire et à l'Holocène. Impact des facteurs naturels et anthropiques , Université François-Rabelais de Tours. 419 p.Google Scholar
Fourmont, A, Macaire, JJ, Bréhéret, JG. 2009. Contrasted Late Glacial and Holocene hydrology of Sarliève paleolake (France) from sediment geometry and detrital versus biochemical composition. Journal of Paleolimnology 41(3):471–90.Google Scholar
Fournier, G. 1996. Sarliève: un lac au moyen-âge. Association du Site de Gergovie 11:234.Google Scholar
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.Google Scholar
Geyh, MA, Grosjean, M, Núñez, L, Schotterer, U. 1999. Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama desert (northern Chile). Quaternary Research 52(2):143–53.Google Scholar
Harté, C, Jull, AJT. 2007. Radiocarbon dating: plant macrofossils. In: Elias, SA, editor. Encyclopedia of Quaternary Science. Amsterdam: Elsevier. p 2958–65.Google Scholar
Hutchinson, GE. 1975. A Treatise on Limnology. Volume 3, Limnological Botany. New York: John Wiley & Sons. 660 p.Google Scholar
Kantrud, HA. 1991. Wigeongrass (Ruppia maritima L.): a literature review. Washington, DC: US Fish and Wildlife Service. 58 p.Google Scholar
Kessler, J, Chambraud, A. 1986. La météo de la France. Tous les climats localité par localité. Paris: J.C. Lattès. 312 p.Google Scholar
Macaire, JJ, Fourmont, A, Argant, J, Bréheret, JG, Hinschberger, F, Trément, F. 2010. Quantitative analysis of climate versus human impact on sediment yield since the Lateglacial: the Sarliève palaeolake catchment (France). The Holocene 20(4):497–516.Google Scholar
MacDonald, GM, Beukens, RP, Kieser, WE. 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72(3):1150–5.Google Scholar
Madsen, TV, Sand-Jensen, K. 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41(1–3):540.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.CrossRefGoogle Scholar
Murphy, LR, Kinsey, ST, Durako, MJ. 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany 75(4):293–309.Google Scholar
Raven, JA. 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biological Reviews 45:167–221.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Smith, FA. 1968. Rates of photosynthesis in characean cells. II. Photosynthetic 14CO2 fixation and 14C-bicarbonate uptake by characean cells. Journal of Experimental Botany 19(1):207–17.Google Scholar
Soulié-Märsche, I. 2002. Les charophytes comme biomarqueurs pour la reconstitution des paléoenvironnements lacustres. In: Miskovsky, JC, editor. Géologie de la Préhistoire. Paris: Geopre. p 751–69.Google Scholar
Steeman Nielsen, E. 1947. Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Botanisk Arkiv Udgivet af Dansk Botanisk Forening 8:371.Google Scholar
Trément, F, Argant, J, Bréhéret, JG, Cabanis, M, Dousteyssier, B, Fourmont, A, Fournier, G, Liabeuf, R, Loison, G, López Sáez, JA, Macaire, JJ, Marinval, P, Mennessier-Jouannet, C, Milcent, PY, Prat, B, Rialland, Y, Vernet, G. 2007. Un ancien lac au pied de l'oppidum de Gergovie (Puy-de-Dôme). Interactions sociétés-milieux dans le bassin de Sarliève à l'Holocène. Gallia 64:289–351.Google Scholar
Verhoeven, JTA. 1979. The ecology of Ruppia-dominated communities in western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquatic Botany 6:197–267.CrossRefGoogle Scholar
Yansa, C, Long, D. 2007. Improving the accuracy of radiocarbon chronologies from lake-sediment cores: testing for the 14C reservoir effect in aquatic macrophytes. Report of findings. CWS Venture Grant Awarded. 9 p.Google Scholar