Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T07:17:31.893Z Has data issue: false hasContentIssue false

Reconstruction of Soil Carbon Redistribution Processes along a Hillslope Section in a Forested Area

Published online by Cambridge University Press:  19 November 2018

Tibor József Novák*
Affiliation:
Debrecen University, Faculty of Technology and Sciences, Department of Landscape Protection and Environmental Geography, H-4032, Egyetem tér 1, Debrecen, Hungary
Mihály Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Bem tér 18/c, Debrecen, Hungary
Botond Buró
Affiliation:
Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Bem tér 18/c, Debrecen, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

The vertical distribution of soil organic carbon (SOC) with depth and its horizontal pattern is influenced by the topography and relief of the surface, due to lateral redistribution of soil material along slopes. Spatial and temproral variability of these changes is frequently due to human impacts on the landscape. In our study, the results of these processes were studied in detail in a small sub-catchment in a forested hillslope section using radiocarbon (14C) dating of SOC and embedded datable material (charcoal, artifacts) from soil profiles with colluvial accumulations. Events with accelerated material redistribution could be identified as an accumulation of a 40-cm-thick colluvial layer between cal BC 410–360 (2σ) and cal AD 430–580 (2σ). Later colluvial deposition resulted in thinner accumulations (cal AD 1120–1220 [2σ] 30 cm; cal AD 1810–1920 [2σ] 21 cm). As the earliest human impact, we found soil transformation from cal BC 1290–1130 (2σ). The depth-age model for SOC compiled according to the average SOC age and its depth showed different characteristics on middle-slope and down-slope position, with rates of 48.0 yr×cm–1 and 22.0 yr×cm–1 respectively, which indicates the importance of topographic position of soils in SOC redistribution processes.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen, Hungary, 3–7 July 2017

References

REFERENCES

Antal, E, Justyák, J. 1995. Seasonal changes of soil moisture in sessile-oak – Turkey oak forest in Síkfőkút (in Hungarian). In: Tar K, Berki I, Kiss Gy, editors. Erdő és Klíma (Forest and Climate). Debrecen: KLTE. p 106118.Google Scholar
Bertalan, L, Túri, Z, Szabó, G. 2016. UAS Photogrammetry and Object-based Image Analysis (GEOBIA): erosion monitoring at the Kazár Badland, Hungary. Acta Geographica Debrecina, Landscape and Environment Series 10:169178. http: //doi.org/10.21120/LE/10/3-4/10.Google Scholar
Botos, Á, Boda, P, Márta, L, Novák, TJ. 2015. The examination of the cultivation-resulted effects on the soils of Turkey oak forests and sessile-oak forests. Economica 8(4/2):225230. http://real.mtak.hu/31213/1/economica_VIII_2015_4_per_2_szama.pdf.Google Scholar
Caopricha, NT, Marín-Spiotta, E. 2014. Soil burial contributes to deep soil organic carbon storage. Soil Biology & Biochemistry 69:251264. http://dx.doi.org/10.1016/j.soilbio.201311.011.Google Scholar
Chaney, RC, Slonim, SM, Slonim, SS. 1982. Determination of Calcium carbonate content in soils. In: Chaney RC, Demars KR. 1982. Geotechnical properties, behavior, and performance of calcareous soils. American Society for Testing and Materials. Philadelphia-Baltimore. p 3–16.Google Scholar
Dobos, A. 2012. Reconstruction of Quaternary landscape development with geomorphological mapping and analysing of sediments at the Cserépfalu Basin (the Bükk Mts, Hungary). Geomorphologica Slovaca et Bohemica (1):722.Google Scholar
Doetterl, S, Berhe, AA, Nadeu, E, Wang, Z, Sommer, M, Fiener, P. 2016. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Science Reviews 154:102122. http://dx.doi.org/10.1016/j.earscirev.201512.005.Google Scholar
Dreibrodt, S, Jarecki, H, Lubos, C, Khamnueva, SV, Klamm, M, Bork, H-R. 2013. Holocene soil formation and soil erosion at a slope beneath the Neolithic earthwork Salzmünde (Saxony-Anhalt, Germany). Catena 107:114. http://dx.doi.org/10.1016/catena.2013.03.002.Google Scholar
Dreibrodt, S, Lubos, C, Terhorst, C, Damm, B, Bork, H-R. 2010. Historical soil erosion by water in Germany: scales and archives,chronology, research perspectives. Quaternary International 222:8095. http://dx.doi.org/10.1016/j.quaint.2009.06.014.Google Scholar
Dreibrodt, S Nelle, O, Lütjen, I, Mitusov, A, Clausen, I, Bork, H-R. 2009. Investigations on buried soils and colluvial layers around Bronze Age burial mounds at Bornhöved (Northern Germany) – An approach to test the hypothesis of “landscape openness” by the incidence of colluviation. The Holocene 19(3):487497.Google Scholar
Ellerbrock, RH, Gerke, HH, Deumlich, D. 2016. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany. Soil and Tillage Research 156:209218. https://doi.org/10.1016/j.still.2015.08.014.Google Scholar
Fekete, I, Lajtha, K, Kotroczó, Zs, Várbíró, G, Varga, Cs, Tóth, JA, Demeter, I, Veperdi, G, Berki, I. 2017. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Global Change Biology 23:(8):31543168.Google Scholar
Gierga, M, Hajdas, I, van Raden, UJ, Gilli, A, Wacker, L, Sturm, M, Bernasconi, SM, Smittenberg, RH. 2016. Long-stored soil carbon released by prehistoric land use: Evidence from compound-specific radiocarbon analysis on Soppensee lake sediments. Quaternary Science Reviews 144:123131. http://dx.doi.org/10.1016/j.quascirev.2016.05.011.Google Scholar
Gyalog, L, editor. 2005. Explanations to the Surface Geological Map of Hungary in 1:100 000 Scale. Budapest: Hungarian Institute of Geology. 189 p. In Hungarian.Google Scholar
Hales, TC, Scharer, KM, Wooten, RM. 2012. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows. Geomorphology 138:121129. http://dx.doi.org/10.1016/j.geomorph.2011.08.030.Google Scholar
FAO. 2006. Guidelines for Soil Description. 4th edition. Rome: FAO. 97 p.Google Scholar
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014 (2015 update). World Soil Resources Reports 106. Rome: FAO. 181 p.Google Scholar
Jull, AJT, Burr, GS, Beck, JW, Hodgins, GWL, Biddulph, DL, Gann, J, Hatheway, AL, Lange, TE, Lifton, NA. 2006. Application of accelerator mass spectrometry to environmental and paleoclimate studies at the University of Arizona. Radioactivity in the Environment 8:323.Google Scholar
Kirkels, FMSA, Cammeraat, LH, Kuhn, NJ. 2014. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes – A review of different concepts. Geomorphology 226:94105. http://dx.doi.org/10.1016/j.geomorph.2014.07.023.Google Scholar
Labaz, B, Musztyfaga, E, Waroszewski, J, Bogacz, A, Jezierski, P, Kabala, C. 2018. Landscape-related transformation and differentiation of Chernozems – Catenary approach in the Silesian Lowland, SW Poland. Catena 161:6376.Google Scholar
Li, HC, Burr, GS, Löwemark, L, Ku, TL. 2017. AMS 14C applications. Quaternary International 447:12. https://doi.org/10.1016/j.quaint.2017.07.033.Google Scholar
Miao, X, Wang, H, Hanson, PR, Mason, JA, Liu, X. 2016. A new method to constrain soil development using both OSL and radiocarbon dating. Geoderma 261:93100. http://dx.doi.org/10.1016/j.geoderma.2015.07.004.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM, Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendy Laboratory of Environmental Studies (Debrecen, Hungary). Radiocarbon 55:665676.Google Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, HA. 2013b. ENVIRONMICADAS: a mini 14C AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55:33844.Google Scholar
Nearing, MA, Xie, Y, Liu, B, Ye, Y. 2017. Natural and anthropogenic rates of soil erosion. International Soil and Water Conservation Research 5:7784. http://dx.doi.org/10.1016/j.iswcr.2017.04.001.Google Scholar
Pansu, M, Gatheyrou, J. 2006. Handbook of Soil Analysis. Berlin-Heidelberg: Springer Verlag. 3542.Google Scholar
Ponomareva, VV, Plotnikova, TA. 1980. Gumus i Pochvoobrazovanie (Humus and Pedogenesis). Leningrad: Nauka. p 6574.Google Scholar
Premrov, A, Cummins, T, Byrne, KA. 2017. Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses, sampled by horizon. Catena 150:291301. http://dx.doi.org/10.1016/j.catena.2016.11.030.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guil- derson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Reiß, S, Dreibrodt, S, Lubos, CCM, Bork, HR. 2009. Land use history and historical soil erosion at Albersdorf (northern Germany) – Ceased agricultural land use after the pre-historical period. Catena 77:107118. http://dx.doi.org/10.1016/j.catena.2008.11.001.Google Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnar, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nuclear Instruments and Methods in Physics Research B 361:406413.Google Scholar
Simonneau, A, Doyen, E, Chapron, E, Millet, L, Vannière, B, Di Giovanni, C, Bossard, N, Tachikawa, K, Bard, E, Albéric, P, Desmet, M, Roux, G, Lajeunesse, P, Berger, JF, Arnaud, F. 2013. Holocene land-use evolution and associated soil erosion in the French Prealps inferred from Lake Paladru sediments and archaeological evidences. Journal of Archeological Science 40:16361645. http://dx.doi.org/10.1016/j.jas.2012.12.002.Google Scholar
Stefanovits, P. 1985. Soil conditions of the forest. In: Jakucs P editor. 1985. Ecology of an oak forest in Hungary. Results of „Síkfőkút Project” 1 . Budapest: Akadémiai Kiadó. p 5057.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised Calib 3.0 14C age calibration program. Radiocarbon 35:215230.Google Scholar
Sütő, L, Dobány, Z, Novák, T, Incze, J, Adorján, B, Rózsa, P. 2017. Long-term changes of land use/land cover pattern in human transformed microregions – case studies from Borsod-Abauj-Zemplén county, North Hungary. Carpath. J. Earth Environ. Sci 12(2):473483.Google Scholar
Świtoniak, M. 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116:173184. https://doi.org/10.1016/j.catena.2013.12.015.Google Scholar
Świtoniak, M, Charzyński, P, Novák, TJ, Zalewska, K, Bednarek, R. 2014. Forested hilly landscape of Bükkalja Foothill (Hungary). In: Świtoniak M, Charzyński P, editors. 2014. Soil Sequences Atlas. Torun: Nicholaus Copernicus University Press. p 169181.Google Scholar
Świtoniak, M, Mroczek, P, Bednarek, R. 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes – case study: Brdonica and Chełmno Lake Districts (North Poland). Catena 137:583595. http://dx.doi.org/j.catena.2014.09.005.Google Scholar
Synal, HA, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713.Google Scholar
Szalai, Z, Szabó, J, Kovács, J, Mészáros, E, Albert, G, Centeri, Cs, Szabó, B, Madarász, B, Zacháry, D, Jakab, G. 2016. Redistribution of soil organic carbon triggered by erosion at field scale under subhumid climate, Hungary. Pedosphere 26(5):652665. http://dx.doi.org/10.1016/S1002-0160(15)60074-1.Google Scholar
Tóth, JA, Nagy, PT, Krakomperger, Zs, Veres, Zs, Kotroczó, Zs, Kincses, S, Fekete, I, Papp, M, Mészáros, I, Oláh, V. 2013. The effects of climate change on element content and soil pH (Síkfőkút DIRT Project, Northern Hungary). In: Kozak J et al., editors. The Carpathians: Integrating Nature and Society Towards Sustainability, Environmental Science and Engineering. Berlin Heidelberg: Springer-Verlag. p 7788.Google Scholar
Varga Cs, Fekete I, Kotroczó, Zs, Krakomperger, Zs, Vincze, Gy. 2008. The effect of litter on soil organic matter (SOM) turnover in Síkfőkút site. Cereal Research Communications 36:547550.Google Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Némec, M, Ruff, M, Suter, M, Synal, HA, Vockenhuber, C. 2010. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52:252262.Google Scholar
Waroszewski, J, Sprafke, T, Kabala, C, Musztyfaga, E. 2018. Aeolian silt contribution to soils on mountain slopes (Mt. Ślęża, southwest Poland). Quaternary Research 89(3):702717. https://doi.org/10.1017/qua.2017.76.Google Scholar
Wiaux, F, Vanclooster, M, Cornelis, J-T, Van Oost, K. 2014. Factors controlling soil organic carbon persistence along an eroding hillslope on the loess belt. Soil Biology & Biochemistry 77:187196. http://dx.doi.org/10.1016/j.soilbio.2014.05.032 Google Scholar
Yoo, K, Amundson, R, Heimsath, A, Dietrich, W. 2006. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 130(1–2):4765. doi:10.1016/j.geoderma.2005.01.008.Google Scholar
Zádorová, T, Penížek, V, Šefrna, L, Drábek, O, Mihaljevič, M, Volf, Š, Chuman, T. 2013. Identification of Neolithic to Modern erosion–sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma 195:5669.Google Scholar
Zádorová, T, Penížek, V, Vašát, R, Žížala, D, Chuman, T, Vaněk, A. 2015. Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma 253–254:122134. http://dx.doi.org/10.1016/j.geoderma.201504.012.Google Scholar
Supplementary material: Image

Novák et al. supplementary material

Novák et al. supplementary material 1

Download Novák et al. supplementary material(Image)
Image 12.5 MB