Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T23:01:03.818Z Has data issue: false hasContentIssue false

A New Annual 14C Dataset for Calibrating the Thera Eruption

Part of: IntCal 20

Published online by Cambridge University Press:  22 June 2020

Ronny Friedrich*
Affiliation:
Curt-Engelhorn-Center Archaeometry – Dating Laboratory, Mannheim, Germany
Bernd Kromer
Affiliation:
Curt-Engelhorn-Center Archaeometry – Dating Laboratory, Mannheim, Germany
Lukas Wacker
Affiliation:
ETH-Zurich – LIP, Zurich, Switzerland
Jesper Olsen
Affiliation:
Aarhus Universitet – Physics and Astronomy, Aarhus8000, Denmark
Sabine Remmele
Affiliation:
Curt-Engelhorn-Center Archaeometry – Dating Laboratory, Mannheim, Germany University of Hohenheim, Institute of Botany, Stuttgart, Germany
Alexander Land
Affiliation:
University of Hohenheim, Institute of Botany, Stuttgart, Germany University of Applied Forest Sciences, Rottenburg, Germany
Charlotte Pearson
Affiliation:
University of Arizona, Laboratory of Tree-Ring Research, Tucson, Arizona, USA
*
*Corresponding author. Email: [email protected].

Abstract

Annually resolved tree-ring samples of the time period 1625–1510 BCE were analyzed from the German oak tree-ring chronology. Blocks of the same tree rings were previously used to generate IntCal calibration data. The new dataset shows an offset to the calibration data IntCal13 of 24 years and resembles annual data for the same time period derived from tree-ring records in other growth locations. A subset of samples of the period 1625–1585 BCE was additionally measured in three other laboratories (ETH, AAR, AA) for quality control.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, MJ, Michael, HN, Betancourt, PP. 1988. The Thera eruption: continuing discussion of the dating. Archaeometry 30:165182.CrossRefGoogle Scholar
Bronk Ramsey, C, Manning, SW, Galimberti, M. 2004. Dating the volcanic eruption at Thera. Radiocarbon 46(1):325344.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Constantinidis, D. 2016. A Test of Time and A Test of Time Revisited: The Volcano of Thera and the Chronology and History of the Aegean and East Mediterranean in the Mid-Second Millennium BC by Sturt W. Manning (review). Journal of Eastern Mediterranean Archaeology and Heritage Studies 4:365367.CrossRefGoogle Scholar
Donahue, DJ, Beck, JW, Biddulph, D, Burr, GS, Courtney, C, Damon, PE, Hatheway, AL, Hewitt, L, Jull, AT, Lange, T, Lifton, N. 1997. Status of the NSF-Arizona AMS laboratory. Nuclear Instruments and Methods in Physics Research B 123(1–4):5156.CrossRefGoogle Scholar
Friedrich, WL, Kromer, B, Friedrich, M, Heinemeier, J, Pfeiffer, T, Talamo, S. 2006. Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548. doi: 10.1126/science.1125087.CrossRefGoogle ScholarPubMed
Hogg, AG, Fifield, LK, Palmer, JG, Turney, CSM, Galbraith, R. 2007. Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range. Radiocarbon 49:379391. doi: 10.1017/S0033822200042314.CrossRefGoogle Scholar
Jull, AT, Burr, GS, Beck, JW, Hodgins, GW, Biddulph, DL, McHargue, LR, Lange, TE. 2008. Accelerator mass spectrometry of long-lived light radionuclides. Radioactivity in the Environment 11:241262.CrossRefGoogle Scholar
Jull, AJT, Burr, GS. 2014. Accelerator mass spectrometry. In: Rink, WJ, Thompson, J, editors. Encyclopedia of scientific dating methods. Dordrecht, Netherlands: Springer. p. 16. [accessed 2019 Sep 30]. doi: 10.1007/978-94-007-6326-5_102-3.Google Scholar
Kromer, B, Lindauer, S, Synal, H-A, Wacker, L. 2013. MAMS – A new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 294:1113. doi: 10.1016/j.nimb.2012.01.015.CrossRefGoogle Scholar
Kutschera, W, Bietak, M, Wild, EM, Ramsey, CB, Dee, M, Golser, R, Kopetzky, K, Stadler, P, Steier, P, Thanheiser, U, et al. 2012. The chronology of Tell El-Daba: a crucial meeting point of 14C dating, archaeology, and Egyptology in the 2nd millennium BC. Radiocarbon 54:407422. doi: 10.1017/S0033822200047172.CrossRefGoogle Scholar
Loader, NJ, Robertson, I, Barker, AC, Switsur, VR, Waterhouse, JS. 1997. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chemical Geology 136:313317. doi: 10.1016/S0009-2541(96)00133-7.CrossRefGoogle Scholar
Manning, SW, Höflmayer, F, Moeller, N, Dee, MW, Ramsey, CB, Fleitmann, D, Higham, T, Kutschera, W, Wild, EM. 2014. Dating the Thera (Santorini) eruption: archaeological and scientific evidence supporting a high chronology. Antiquity 88:11641179. doi: 10.1017/S0003598X00115388.CrossRefGoogle Scholar
Němec, M, Wacker, L, Gäggeler, H. 2010. Optimization of the graphitization process at Age-1. Radiocarbon 52:13801393. doi: 10.1017/S0033822200046464.CrossRefGoogle Scholar
Olsen, J, Tikhomirov, D, Grosen, C, Heinemeier, J, Klein, M. 2017. Radiocarbon analysis on the new AARAMS 1MV Tandetron. Radiocarbon 59:905913. doi: 10.1017/RDC.2016.85.CrossRefGoogle Scholar
Pearson, CL, Brewer, PW, Brown, D, Heaton, TJ, Hodgins, GWL, Jull, AJT, Lange, T, Salzer, MW. 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4:eaar8241. doi: 10.1126/sciadv.aar8241.CrossRefGoogle ScholarPubMed
Pearson, C, Wacker, L, Bayliss, A, Brown, D, Salzer, M, Brewer, P, Bollhalder, S, Boswijk, G, Hodgins, G. 2020. Annual variation in atmospheric 14C between 1700 BC and 1480 BC. Radiocarbon 62. This issue. doi: 10.1017/RDC.2020.14.CrossRefGoogle Scholar
Pilcher, JR. 1995. Biological considerations in the interpretation of stable isotope ratios in oak tree-rings. Paläoklimaforschung: 157161.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Sigurdsson, H, Carey, S, Alexandri, M, Vougioukalakis, G, Croff, K, Roman, C, Sakellariou, D, Anagnostou, C, Rousakis, G, Ioakim, C, et al. 2006. Marine investigations of Greece’s Santorini Volcanic Field. Eos Trans AGU 87:337. doi: 10.1029/2006EO340001.CrossRefGoogle Scholar
Sookdeo, A, Kromer, B, Büntgen, U, Friedrich, M, Friedrich, R, Helle, G, Pauly, M, Nievergelt, D, Reinig, F, Treydte, K, Synal, H-A, Wacker, L. 2019. Quality dating: A protocol for reproducible high-precision 14C dates applied to Late Glacial wood. Radiocarbon 62. This issue. doi: 10.1017/RDC.2019.132.Google Scholar
Southon, JR, Magana, AL. 2010. A comparison of cellulose extraction and ABA pretreatment methods for AMS 14C dating of ancient wood. Radiocarbon 52:13711379. doi: 10.1017/S0033822200046452.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713. doi: 10.1016/j.nimb.2007.01.138.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010a. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52:252262. doi: 10.1017/S0033822200045288.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979. doi: 10.1016/j.nimb.2009.10.078.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268:931934. doi: 10.1016/j.nimb.2009.10.067.CrossRefGoogle Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique, Archaeometry 20(1):1931.CrossRefGoogle Scholar
Xu, X, Khosh, MS, Druffel-Rodriguez, KC, Trumbore, SE, Southon, JR. 2010. Is the consensus value of ANU sucrose (IAEA C-6) too high? Radiocarbon 52:866874. doi: 10.1017/S0033822200045951.CrossRefGoogle Scholar
Supplementary material: File

Friedrich et al. supplementary material

Friedrich et al. supplementary material

Download Friedrich et al. supplementary material(File)
File 27.5 KB