Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:27:25.326Z Has data issue: false hasContentIssue false

Molecular Fingerprinting of 14C Dated Soil Organic Matter Fractions from Archaeological Settings in NW Spain

Published online by Cambridge University Press:  18 July 2018

Cruz Ferro-Vázquez*
Affiliation:
Department of Archaeology, University of York, King’s Manor, York, YO1 7EP, United Kingdom
Joeri Kaal
Affiliation:
Institute for Heritage Sciences (Incipit), Spanish National Research Council (CSIC), Avenida de Vigo s/n, 15780, Santiago de Compostela, Spain Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Campus Sur, 15782, Santiago de Compostela, Spain
Francisco Javier Santos Arévalo
Affiliation:
Centro Nacional de Aceleradores, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas y Junta de Andalucía. Av. Thomas Alva Edison 7, 41092, Seville, Spain
Felipe Criado Boado
Affiliation:
Institute for Heritage Sciences (Incipit), Spanish National Research Council (CSIC), Avenida de Vigo s/n, 15780, Santiago de Compostela, Spain
*
*Corresponding author. Email: [email protected].

Abstract

This paper evaluates the complexities of radiocarbon (14C) dates from soil organic matter (SOM) in archaeological scenarios. The aqueous NaOH-insoluble residual SOM from Neolithic to medieval sites in NW Spain produced consistently older calibrated 14C ages than NaOH-extractable SOM. Using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and thermally assisted hydrolysis and methylation (THM-GC-MS), we analyzed the molecular composition of these SOM fractions, aiming to understand the differences in 14C ages and to gain insight on SOM dynamics in relation to age fractionation. The molecular composition of the NaOH-extractable SOM, which accounts for roughly two-thirds of total SOM, has a larger proportion of microbial detritus than the NaOH-insoluble SOM. This might suggest that the discrepancies between the two fractions is due to microbial rejuvenation in the extractable fraction, leading to 14C results that are younger than the activity that is to be dated. However, archaeological evidence presented here unambiguously shows that the 14C age of the extractable SOM provides the more accurate age for the targeted activity, and that the insoluble fraction contains inherited old carbon. After statistical data evaluation using Partial Least Squares-Regression (PLS-R), it is concluded that this inherited SOM is a mixture of Black Carbon from wild and/or domestic fires and recalcitrant aliphatic SOM.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdi, H. 2010. Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics 2:97106.Google Scholar
Aboal Fernández, R, Castro Hierro, V. 2005. Cultura Castrexa: Castro de Montealegre. In: Criado-Boado F, Cabrejas E, editors. Obras Públicas e Patrimonio: Estudo arqueolóxico do corredor do Morrazo. 7680.Google Scholar
Aboal Fernández, R, Rodríguez Martínez, R, Castro Hierro, V, Cancela Cereijo, C, Blanco Rotea, R. 2013. Intervención e posta en valor do sitio arqueolóxico de Monte do Castro (Ribadumia). Informe Valorativo (Clave Expediente Administrativo: CT 102A/515–0).Google Scholar
Albrecht, C, Kühn, P. 2011. Properties and formation of Black Soils on the Island of Poel (NE Germany). Quaternary International 243:305312.Google Scholar
Baldock, JA, Oades, JM, Waters, AG, Peng, X, Vassallo, AM, Wilson, MA. 1992. Aspects of the chemical structure of soil organic materials as revealed by solid-state13C NMR spectroscopy. Biogeochemistry 16:142.Google Scholar
Balesdent, J. 1987. The turnover of soil organic fractions estimated by radiocarbon dating. Science of The Total Environment 62:405408.Google Scholar
Balesdent, J, Chenu, C, Balabane, M. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research 53:215230.Google Scholar
Ballesteros Arias, P. 2010. La arqueología rural y la construcción de un paisaje agrario medieval: el caso de Galicia. In: Kirchner H, editor. Por una arqueología agraria. Perspectivas de investigación sobre espacios de cultivo en las sociedades medievales hispánicas. Oxford. p 2540.Google Scholar
Ballesteros Arias, P, Blanco Rotea, R. 2009. Aldeas y espacios agrarios altomedievales en Galicia. In: Quirós Castillo JA, editor. The Archaeology of Early Medieval Villages in Europe.Google Scholar
Ballesteros Arias, P, Criado-Boado, F, Andrade Cernadas, J. 2006. Formas y fechas de un paisaje agrario de época medieval: a Cidade da Cultura en Santiago de Compostela. Revista Arqueología Espacial 26:193227.Google Scholar
Becker-Heidmann, P, Liang-wu, L, Scharpenseel, H-W. 1988. Radiocarbon dating of organic matter fractions of a Chinese mollisol. Zeitschrift für Pflanzenernährung und Bodenkunde 151:3739.Google Scholar
Blanco-Rotea, R, Prieto, M, Ballesteros Arias, P, López González, L. 2010. El despoblado de A Pousada: La formación de una aldea rural en la Alta Edad Media. Reconstruyendo la historia de la comarca del Ulla–Deza (Galicia España). Escenarios arqueológicos del pasado. 111120.Google Scholar
Blyth, AJ, Hua, Q, Smith, A, Frisia, S, Borsato, A, Hellstrom, J. 2017. Exploring the dating of “dirty” speleothems and cave sinters using radiocarbon dating of preserved organic matter. Quaternary Geochronology 39:9298.Google Scholar
Bouhier, A. 1979. La Galice: essai géographique danalyse et dinterpretation dun vieux complexe agraire. Imprimerie Yonnaise La Roche-sur-Yon.Google Scholar
Buurman, P, Nierop, KGJ, Pontevedra-Pombal, X, Martínez Cortizas, A. 2006. Chapter 10: Molecular chemistry by pyrolysis–GC/MS of selected samples of the Penido Vello peat deposit Galicia NW Spain. Developments in Earth Surface Processes 9:217240.Google Scholar
Buurman, P, Roscoe, R. 2011. Different chemical composition of free light occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields Minas Gerais Brazil: a pyrolysis-GC/MS study. European Journal of Soil Science 62:253266.Google Scholar
Castroviejo, R, Armstrong, E, Lago, A, Martínez Simón, JM, Argüelles, A. 2004. Geología de las mineralizaciones de sulfuros masivos en los cloritoesquistos de Moeche (Complejo de Cabo Ortegal La Coruña). Boletín geológico y minero 115:334.Google Scholar
Challinor, JM. 2001. Review: the development and applications of thermally assisted hydrolysis and methylation reactions. Journal of Analytical and Applied Pyrolysis 61:334.Google Scholar
Chamizo Calvo, E, López-Gutiérrez, JM, Ruiz-Gómez, A, Santos, FJ, García-León, M, Maden, C, Alfimov, V. 2008. Status of the compact 1MV AMS facility at the Centro Nacional de Aceleradores (Spain). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266:22172220.Google Scholar
Chazarra, A, Mestre, A, Pires, V. 2011. Atlas climático ibérico. Ministerio de Medio Ambiente y Medio Rural y Marino. Instituto de Meteorologia de Portugal.Google Scholar
Cherkinsky, A, Wallace, K. 2017. Radiocarbon age of soil organic matter fractions buried by tephra in Alaska. Radiocarbon 59:465472.Google Scholar
Chiavari, G, Galletti, GC. 1992. Pyrolysis—gas chromatography/mass spectrometry of amino acids. Journal of Analytical and Applied Pyrolysis 24:123137.Google Scholar
Criado Boado, F, Bonilla Rodríguez, A, Cerqueiro Landín, D, Díaz Vázquez, M, González Mendez, M, Infante Roura, F, Méndez Fernández, F, Penedo Romero, R, Rodríguez Puentes, E, Vaquero Lastres, J. 1991. Arqueología del paisaje el área Bocelo-Furelos entre los tiempos paleolíticos y medievales (campañas de 1987 1988 y 1989) Arqueoloxía/investigación 6.Google Scholar
Criado Boado, F, Fábregas Valcarce, R. 1989. The megalithic phenomenon of northwest Spain: main trends. Antiquity 63:682696.Google Scholar
Fábregas Valcarce, R. 1988. Cronología y periodización del megalitismo en Galicia y norte de Portugal. Espacio Tiempo y Forma. Serie I Prehistoria 1:279291.Google Scholar
Ferro-Vázquez, C, González Prieto, SG, Martínez Cortizas, A, Criado Boado, F. 2015. Deciphering the evolution of agrarian technologies during the last ~1600 years using the isotopic fingerprint (δ13C δ15N) of a polycyclic terraced soil. Estudos do Quaternário/Quaternary Studies 12:3953.Google Scholar
Ferro-Vázquez, C, Martínez-Cortizas, A, Nóvoa-Muñoz, JC, Ballesteros-Arias, P, Criado-Boado, F. 2014. 1500 years of soil use reconstructed from the chemical properties of a terraced soil sequence. Quaternary International 346:2840.Google Scholar
Fowler, AJ, Gillespie, R, Hedges, REM. 1986. Radiocarbon dating of sediments. Radiocarbon 28:441450.Google Scholar
Franco, M, Rodríguez Martínez, R. 2015. Moneda y cerámica romana aparecida en A Lanzada durante la campaña de excavación de 2010. Numisma: revista de Estudios Numismáticos 259:732.Google Scholar
GEODE-IGME. Mapa Geológico Digital Contínuo. [Online]. Available: http://info.igme.es/cartografiadigital/geologica/geodezona.aspx?Id=Z1200 [Accessed Jun 2017].Google Scholar
Geyh, MA, Roeschmann, G, Wijmstra, TA, Middeldorp, AA. 1983. The unreliability of 14C dates obtained from buried sandy podzols. Radiocarbon 25:409416.Google Scholar
Gianotti García, C, Cancela Cereijo, C. 2005. Neolítico Final: Montenegro. Testemuña da ocupación humana durante o neolítico final e o período alto-medieval na Península do Morrazo. In: Criado Boado F, Cabrejas E, editors. Obras Públicas e Patrimonio: Estudo arqueolóxico do corredor do Morrazo. p 5054.Google Scholar
Gilet-Blein, N, Marien, G, Evin, J. 1980. Unreliability of 14C dates from organic matter of soils. Radiocarbon 22:919929.Google Scholar
González-Ruibal, A, Martínez, R, Fernández, R, Hierro, V. 2007. Comercio mediterráneo en el castro de Montealegre (Pontevedra Galicia). Siglo II a.C.–inicios del s. I d. C Archivo español de arqueología 80.Google Scholar
González-Vila, FJ, Tinoco, P, Almendros, G, Martin, F. 2001. Pyrolysis−GC−MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass. Journal of Agricultural and Food Chemistry 49:11281131.Google Scholar
Grand, S, Lavkulich, LM. 2011. Depth distribution and predictors of soil organic carbon in podzols of a forested watershed in southwestern Canada. Soil Science 176:164174.Google Scholar
Hajdas, I, Trumm, J, Bonani, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54:897903.Google Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A., Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands Finland. Radiocarbon 52:171204.Google Scholar
Hetier, JM, Guillet, B, Brousse, R, Delibrajs, G, Maury, RC. 1983. 14C dating of buried soils in the volcanic chaine des puys (France). Bulletin Volcanologique 46:193201.Google Scholar
Jordá Pardo, J, Rey Castiñeira, J, Picón Platas, I, Abad Vidal, E, Marín Suárez, C. 2009. Radiocarbon and chronology of the Iron Age hillforts of northwestern Iberia. In: Karl R, Leskovar J, editors. Interpretierte Eisenzeiten. Fallstudien Methoden Theorie. Tagungsbeiträge der 3 Linzer Gespräche zur interpretativen Eisenzeitarchäologie, Oberösterreichischen Landesmuseum 8198.Google Scholar
Kaal, J, Brodowski, S, Baldock, JA, Nierop, KGJ, Cortizas, AM. 2008a. Characterisation of aged black carbon using pyrolysis-GC/MS thermally assisted hydrolysis and methylation (THM) direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39:14151426.Google Scholar
Kaal, J, Filley, TR. 2016. Novel molecular proxies for inferring pyrogenic black carbon oxidation state using thermally assisted hydrolysis and methylation (THM-GC–MS) with 13C-labeled tetramethylammonium hydroxide (TMAH). Journal of Analytical and Applied Pyrolysis 121:146154.Google Scholar
Kaal, J, Martínez-Cortizas, A, Nierop, KGJ, Buurman, P. 2008b. A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain. Applied Geochemistry 23:23952405.Google Scholar
Kaiser, K, Guggenberger, G. 2000. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31:711725.Google Scholar
Kaiser, K, Zech, W. 2000. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. Journal of Plant Nutrition and Soil Science 163:531535.Google Scholar
Kalbitz, K, Schwesig, D, Rethemeyer, J, Matzner, E. 2005. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology and Biochemistry 37:13191331.Google Scholar
Kögel-Knabner, I. 2000. Analytical approaches for characterizing soil organic matter. Organic Geochemistry 31:609625.Google Scholar
Kolattukudy, PE. 2001. Polyesters in higher plants. in: Babel W, Steinbüchel A, editors. Biopolyesters. Springer Berlin Heidelberg Berlin Heidelberg. 149.Google Scholar
Kracht, O. 2001. Origin and genesis of dissolved organic matter: A study by Py-GC/MS-IRMS Friedrich-Schiller-Universität 146.Google Scholar
Kristiansen, SM, Dalsgaard, K, Holst, MK, Aaby, B, Heinemeier, J. 2003. Dating of prehistoric burial mounds by 14C analysis of soil organic matter fractions. Radiocarbon 45:101112.Google Scholar
Lehmann, J, Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528:6068.Google Scholar
Liu, Z, Zhao, M, Sun, H, Yang, R, Chen, B, Yang, M, Zeng, Q, Zeng, H. 2017. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: Coupled action of carbonate weathering and aquatic photosynthesis. Applied Geochemistry 78:96104.Google Scholar
López-Romero, E, Mañana Borrazás, P. 2013. El círculo lítico de Monte Lobeira (Vilanova de Arousa Pontevedra): trabajos de 2008 y 2010. CSIC Incipit.Google Scholar
Mañana-Borrazás, P. 2005. Túmulo número 5 de Forno dos Mouros (Ortigueira A Coruña). Primeros resultados. Cuadernos de Estudios Gallegos II:3679.Google Scholar
Mañana-Borrazás, P, Criado-Boado, F, Ferro-Vázquez, C, Martínez Cortizas, A. 2014. Punctuated stages of megalithic construction: from barrows chronologies to sediments. In Session B27” Megalithic biographies: cycles of use and closure” XVII Mundial Congress of Prehistoric and Protohistoric Sciencies (1-7 September 2014) Burgos.Google Scholar
Martin, CW, Johnson, WC. 1995. Variation in radiocarbon ages of soil organic matter fractions from Late Quaternary buried soils. Quaternary Research 43:232237.Google Scholar
Martínez Cortizas, A, Pérez-Alberti, A. 1999. Atlas Climático de Galicia. Consellería de Medio Ambiente Xunta de Galicia.Google Scholar
Martínez Prieto, P, Lantes Suárez, O, Martínez Cortizas, A. 2008. O campaniforme cordado de Forno dos Mouros (Toques, A Coruña). Cuadernos de Estudios Gallegos, 55:3151.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: Methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246251.Google Scholar
Matthews, J. 1980. Some problems and implications of 14C dates from a podzol buried beneath an end moraine at Haugabreen southern Norway. Geografiska Annaler. Series A. Physical Geography. 185208.Google Scholar
Nip, M, Tegelaar, EW, Brinkhuis, H, De Leeuw, JW, Schenck, PA, Holloway, PJ. 1986. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: Recognition of a new highly aliphatic and resistant biopolymer. Organic Geochemistry 10:769778.Google Scholar
Olsson, IU. 1974. Some problems in connection with the evaluation of C14 dates. Geologiska Föreningen i Stockholm Förhandlingar 96:311320.Google Scholar
Parcero-Oubiña, C, Ayán Vila, X. 2009. Almacenamiento unidades domésticas y comunidades en el noroeste prerromano. Sistemas de Almacenamiento entre los Pueblos Prerromanos peninsulares. Ediciones de la Universidad de Castilla-La Mancha Huesca. 367422.Google Scholar
Pastorova, I, Botto, RE, Arisz, PW, Boon, JJ. 1994. Cellulose char structure: a combined analytical Py-GC-MS FTIR and NMR study. Carbohydrate Research 262:2747.Google Scholar
Perrin, RMS, Willis, EH, Hodge, CAH. 1964. Dating of humus podzols by residual radiocarbon activity. Nature (London): Medium: X; Size, p 165166.Google Scholar
Pessenda, LCR, Gouveia, SEM, Aravena, R. 2001. Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal. Radiocarbon 43:595601.Google Scholar
Pietsch, D, Kühn, P. 2014. Buried soils in the context of geoarchaeological research—two examples from Germany and Ethiopia. Archaeological and Anthropological Sciences.Google Scholar
Pouwels, AD, Eijkel, GB, Boon, JJ. 1989. Curie-point pyrolysis-capillary gas chromatography-high-resolution mass spectrometry of microcrystalline cellulose. Journal of Analytical and Applied Pyrolysis 14:237280.Google Scholar
Prieto Martínez, P, Mañana-Borrazás, P, Costa Casais, M, Criado-Boado, F, López Sáez, JA, Carrión Marco, Y, Martínez Cortizas, A. 2012. Síntesis Regionales: Galicia. In: Rojo Guerra M, Garrido Pena R, García Martínez, de Lagrán I, editors. El Neolítico en la Península Ibérica y su contexto europeo, Cátedra 215253.Google Scholar
Puy, A, Balbo, AL. 2013. The genesis of irrigated terraces in al-Andalus. A geoarchaeological perspective on intensive agriculture in semi-arid environments (Ricote Murcia Spain). Journal of Arid Environments 89:4556.Google Scholar
Puy, A, Balbo, AL, Bubenzer, O. 2016. Radiocarbon dating of agrarian terraces by means of buried soils. Radiocarbon 58:345363.Google Scholar
Quirós-Castillo, J. 2014. Agrarian archaeology in northern Iberia: Geoarchaeology and early medieval land use. Quaternary International 346:5668.Google Scholar
R Core Development Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
Ramil González, E. 2000. Intervención arqueolóxica no castro dos Prados-Espasante (Ortigueira-A Coruña). Brigantium 12:175178.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guil- derson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:12991304.Google Scholar
Reuther, JD, Cherkinsky, A, Coffman, S. 2017. Radiocarbon variation in charcoal/wood and soil fractions from a loessic setting in central Alaska. Radiocarbon 59:449464.Google Scholar
Rodríguez Martínez, R. 2015. Albiscando crenzas da Idade do Ferro? Datos documentados na escavación de Monte do Castro (Ribadumia Pontevedra). Fol de Veneno Anuario de Antropoloxía e Historia de Galiza. 5.Google Scholar
Rodríguez Martínez, R, Aboal-Fernández, R, Castro Hierro, V, Cancela Cereijo, C, Ayán Vila, X. 2011. Una posible factoría prerromana en el noroeste: primeras valoraciones de la intervención en el campo de A Lanzada (Sanxenxo Pontevedra). Férvedes: Revista de investigación 7:167173.Google Scholar
Ross, AB, Junyapoon, S, Jones, JM, Williams, A, Bartle, KD. 2005. A study of different soots using pyrolysis–GC–MS and comparison with solvent extractable material. Journal of Analytical and Applied Pyrolysis 74:494501.Google Scholar
Rumpel, C, González-Pérez, JA, Bardoux, G, Largeau, C, Gonzalez-Vila, FJ, Valentin, C. 2007. Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Organic Geochemistry 38:911920.Google Scholar
Saiz-Jimenez, C. 1994. Analytical pyrolysis of humic substances: pitfalls limitations and possible solutions. Environmental Science & Technology 28:17731780.Google Scholar
Sanjurjo-Sánchez, J. 2016. An overview of the use of absolute dating techniques in ancient construction materials. Geosciences 6:22.Google Scholar
Santos Arévalo, F-J, Gómez Martínez, I, Agulló García, L. 2015. 14C SIRI samples at CNA: Measurements at 200kV and 1000kV. Nuclear Instruments and Methods in Physics Research B 361:322326.Google Scholar
Scharpenseel, HW, Becker-Heidmann, P. 1992. Twenty-five years of radiocarbon dating soils: paradigm of erring and learning. Radiocarbon 34:541549.Google Scholar
Schellekens, J, Almeida-Santos, T, Macedo, RS, Buurman, P, Kuyper, TW, Vidal-Torrado, P. 2017. Molecular composition of several soil organic matter fractions from anthropogenic black soils (Terra Preta de Índio) in Amazonia — A pyrolysis-GC/MS study. Geoderma 288:154165.Google Scholar
Schellekens, J, Buurman, P, Pontevedra-Pombal, X. 2009. Selecting parameters for the environmental interpretation of peat molecular chemistry – A pyrolysis-GC/MS study. Organic Geochemistry 40:678691.Google Scholar
Schmidt, C, Zöller, L, Hambach, U. 2015. Dating of sediments and soils. Erlanger Geographische Arbeiten 42:119146.Google Scholar
Schwesig, D, Kalbitz, K, Matzner, E. 2003. Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors. European Journal of Soil Science 54:311322.Google Scholar
Shoji, S, Fujiwara, Y. 1984. Active aluminum and iron in the humus horizons of andosols from Northeastern Japan: their forms properties and significance in clay weathering. Soil Science 137:216226.Google Scholar
Steelman, KL, Ramírez, FC, Valcarce, RF, Guilderson, T, Rowe, MW. 2005. Direct radiocarbon dating of megalithic paints from north-west Iberia. Antiquity 79:379389.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: Reporting of 14C Data. Radiocarbon 19:355363.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215230.Google Scholar
Suárez-Abelenda, M, Buurman, P, Camps Arbestain, M, Kaal, J, Martinez-Cortizas, A, Gartzia-Bengoetxea, N, Macías, F. 2011. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study. European Journal of Soil Science 62:834848.Google Scholar
Suarez Otero, J, Fariña Busto, F. 1990. A Lanzada (Sanxenxo Pontevedra) definición e interpretación de un yacimiento castreño atípico. Apuntes para un estudio de los intercambios protohistóricos en la costa atlántica peninsular. Madrider Mitteilungen. 31.Google Scholar
Tegelaar, EW, de Leeuw, JW, Saiz-Jimenez, C. 1989. Possible origin of aliphatic moieties in humic substances. Science of The Total Environment 81:117.Google Scholar
Tokashiki, Y, Wada, K. 1975. Weathering implications of the mineralogy of clay fractions of two Ando soils Kyushu. Geoderma 14:4762.Google Scholar
Tonneijck, FH, Jansen, B, Nierop, KGJ, Verstraten, JM, Sevink, J, De Lange, L. 2010. Towards understanding of carbon stocks and stabilization in volcanic ash soils in natural Andean ecosystems of northern Ecuador. European Journal of Soil Science 61:392405.Google Scholar
Tonneijck, FH, van der Plicht, J, Jansen, B, Verstraten, JM, Hooghiemstra, H. 2006. Radiocarbon dating of soil organic matter fractions in andosols in northern Ecuador. Radiocarbon 48:337353.Google Scholar
Trumbore, S. 2009. Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences 37:4766.Google Scholar
Tsuge, S, Matsubara, H. 1985. High-resolution pyrolysis-gas chromatography of proteins and related materials. Journal of Analytical and Applied Pyrolysis 8:4964.Google Scholar
Van der Kaaden, A, Boon, JJ, De Leeuw, JW, De Lange, F, Schuyl, PJW, Schulten, HR, Bahr, U. 1984. Comparison of analytical pyrolysis techniques in the characterization of chitin. Analytical Chemistry 56:21602165.Google Scholar
Verde, JR, Buurman, P, Martínez-Cortizas, A, Macías, F, Camps Arbestain, M. 2008. NaOH-extractable organic matter of andic soils from Galicia (NW Spain) under different land use regimes: a pyrolysis GC/MS study. European Journal of Soil Science 59:10961110.Google Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, HA, Vockenhuber, C. 2010a. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52:252262.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010b. A revolutionary graphitisation system: Fully automated compact and simple. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268:931934.Google Scholar
Wang, X, Helgason, B, Westbrook, C, Bedard-Haughn, A. 2016. Effect of mineral sediments on carbon mineralization organic matter composition and microbial community dynamics in a mountain peatland. Soil Biology and Biochemistry 103:1627.Google Scholar
Wang, Y, Amundson, R, Trumbore, S. 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45:282288.Google Scholar
Weiss, N. 2017. Permafrost carbon in a changing Arctic: On periglacial landscape dynamics organic matter characteristics and the stability of a globally significant carbon pool. Stockholm University.Google Scholar
Zegouagh, Y, Derenne, S, Dignac, MF, Baruiso, E, Mariotti, A, Largeau, C. 2004. Demineralisation of a crop soil by mild hydrofluoric acid treatment. Journal of Analytical and Applied Pyrolysis 71:119135.Google Scholar
Supplementary material: File

Ferro-Vázquez et al. supplementary material

Ferro-Vázquez et al. supplementary material 1

Download Ferro-Vázquez et al. supplementary material(File)
File 119.4 KB
Supplementary material: File

Ferro-Vázquez et al. supplementary material

Ferro-Vázquez et al. supplementary material 2

Download Ferro-Vázquez et al. supplementary material(File)
File 25.9 KB