Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T07:41:33.745Z Has data issue: false hasContentIssue false

The Marine Reservoir Effect on the Coast of Rio de Janeiro: Deriving ∆R Values from Fish Otoliths and Mollusk Shells

Published online by Cambridge University Press:  13 April 2018

Kita D Macario*
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Eduardo Q Alves
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil Oxford Radiocarbon Unit (ORAU), Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, United Kingdom
André Luiz Belém
Affiliation:
Observatório Oceanográfico, Universidade Federal Fluminense, Rua Passo da Pátria 156 E345, 24210-240, Niterói, RJ, Brazil
Orangel Aguilera
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Thayse Bertucci
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Maria Cristina Tenório
Affiliation:
Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, Rio de Janeiro, 20940-40, RJ, Brazil
Fabiana M Oliveira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Ingrid S Chanca
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Carla Carvalho
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Rosa Souza
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Rita Scheel-Ybert
Affiliation:
Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, Rio de Janeiro, 20940-40, RJ, Brazil
Gabriela S Nascimento
Affiliation:
ETH Zürich–Biogeoscience Group, Geological Institute, D-ERDW, Sonneggstrasse 5 / NO G47, 8092 Zürich, Switzerland
Fabio Dias
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
Julia Caon
Affiliation:
Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24001-970, RJ, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

Considering the impact of coastal dynamics on the radiocarbon (14C) marine reservoir effect (MRE), upwelling has the potential of enhancing marine influence, usually 14C depleted. Freshwater input can contribute either to increased reservoir offsets, when dead carbon from rock weathering is available, but also towards an atmospheric 14C signal, when the presence of terrestrial organic matter from catchment prevails. An overview of the MRE studies based on shellmounds on the coast of Rio de Janeiro reveals a pattern of negative local corrections for Saquarema and Rio das Ostras but positive values for Cabo Frio island, suggesting the presence of cold upwelling waters in Cabo Frio at 1.6–1.2 cal kBP. New results for a shellmound on the Ilha Grande island, in the western portion of the Rio de Janeiro coast, revealed a negative value at about 3 ka. We discuss distribution of MRE values and temporal variability in the region and their relation to ocean dynamics, continental input and the choice of marine organisms used for ∆R determination. A comparison of local reservoir offsets for the Saquarema region obtained from fish otolith and mollusk shells revealed similar ΔR distributions, showing that both materials can be equally used.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera, O, Belem, AL, Angelica, R, Macario, K, Crapez, M, Nepomuceno, A, Paes, E, Tenório, CM, Dias, F, Souza, R, Rapagnã, L, Carvalho, C, Silva, E. 2015. Fish bone diagenesis in southeastern Brazilian shell mounds and its importance for paleoenvironmental studies. Quaternary International 379:18.Google Scholar
Aguilera, O, Rocha, I, Lopes, M, Lima, I, Lopes, RT, Machado, AS, Guimaraes, RB, Crapez, M, Tenório, CM, Nepomuceno, A. 2017. The bone degenerative processes in senile fishes from Holocene Brazilian shell mounds. Journal of Applied Ichthyology (online) 1:113.Google Scholar
Aguirre, ML, Donato, M, Richiano, S, Farinati, EA. 2011. Pleistocene and Holocene interglacial molluscan assemblages from Patagonian and Bonaerensian littoral (Argentina, SW Atlantic): palaeobiodiversity and palaeobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 308(3–4):277292.Google Scholar
Albuquerque, ALS, Belém, AL, Zuluaga, FJB, Cordeiro, LGM, Mendoza, U, Knoppers, BA, Gurgel, MHC, Meyers, PA, Capilla, R. 2014. Particle fluxes and bulk geochemical characterization of the Cabo Frio Upwelling System in southeastern Brazil: sediment trap experiments between spring 2010 and summer 2012. An. Acad. Bras. Cienc. 86:601619. http://dx.doi.org/10.1590/0001-37652014107212.Google Scholar
Albuquerque, ALS, Meyers, P, Belem, AL, Turcq, B, Siffedine, A, Mendoza, U, Capilla, R. 2016. Mineral and elemental indicators of post-glacial changes in sediment delivery and deposition under a western boundary upwelling system (Cabo Frio, southeastern Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology 445:7282. https://doi.org/10.1016/j.palaeo.2016.01.006.Google Scholar
Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Rita Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015a. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(1):19.Google Scholar
Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015b. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035.Google Scholar
Alves, E, Macario, K, Ascough, P, Bronk Ramsey, C. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms and prospects. Reviews of Geophysics. doi.org/10.1002/2017RG000588Google Scholar
Angulo, RJ, Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.Google Scholar
Angulo, RJ, Lessa, GC, de Souza, MC. 2006. A critical review of mid-to late-Holocene sealevel fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25(5–6):486506.Google Scholar
Ascough, PL, Cook, GT, Church, MJ, Dugmore, AJ, Arge, SV, McGovern, TH. 2006. Variability in North Atlantic marine radiocarbon reservoir effects at c. AD 1000. The Holocene 16(1):131136.Google Scholar
Barbiéri, EB. 1975. Ritmo climático e extração de sal em Cabo Frio. Revista Brasileira de Geografia 37(4):23109.Google Scholar
Bastos, AC, Silva, CG. 2000. Caracterização morfodinâmica do litoral norte fluminense, RJ, Brasil. Revista Brasileira de Oceanografia 48(1):4160.Google Scholar
Belem, AL, Castelao, RM, Albuquerque, AL. 2013. Controls of subsurface temperature variability in a western boundary upwelling system. Geophysics Research Letters 40:13621366.Google Scholar
Bertucci, T, Aguilera, O, Vasconcelos, C, Nascimento, G, Marques, G, Macario, KD, Albuquerque, CQ, Lima, TA, Belém, A. 2018. Late Holocene palaeotemperatures and palaeoenvironments in the Southeastern Brazilian coast inferred from otolith geochemistry. Submitted to Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Boyer, TP, Antonov, JI, Baranova, OK, Coleman, C, Garcia, HE, Grodsky, A, Johnson, DR, Locarnini, RA, Mishonov, AV, O’Brien, TD, Paver, CR, Reagan, JR, Seidov, D, Smolyar, IV, Zweng, MM. 2013. World Ocean Database. In: Levitus S, editor and: Mishonov A, technical editor. NOAA Atlas NESDIS 72. Silver Spring (MD): NOAA. 209, p. http://doi.org/10.7289/V5NZ85MT.Google Scholar
Broecker, WS, Walton, A. 1959. The geochemistry of C14 in fresh-water systems. Geochimica et Cosmochimica Acta 16(1–3):1538.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55:720730.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Cancelli, R, Testa, EH, Hadler, P, Saafeld, K, Barboza, EG, Dillenburg, SR. 2017. Moluscos holocênicos em sedimentos lagunares associados à barreira arenosa da Pinheira-Guarda-Gamboa, Santa Catarina: implicações paleoambientais. Pesquisas em Geociências 44(1):143153.Google Scholar
Carvalho, C, Macario, K, Oliveira, MI, Oliveira, F, Chanca, I, Eduardo Alves, E, Souza, R, Aguilera, O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):19.Google Scholar
Carvalho, C, Macario, K, Lima, T, Chanca, I, Oliveira, F, Alves, EQ, Bertucci, T, Aguilera, O. 2018. Otolith-based chronology of Brazilian Shellmounds. Submitted to Radiocarbon.Google Scholar
Castelao, RM. 2012. Sea surface temperature and wind stress curl variability near a cape. J. Phys. Oceanogr 42:20732087. http://dx.doi.org/10.1175/JPO-D-11-0224.1.Google Scholar
Castelao, RM, Barth, JA. 2006. Upwelling around Cabo Frio, Brazil: the importance of wind stress curl. Geophys. Res. Lett. 33:L03602. http://dx.doi.org/10.1029/2005GL025182.Google Scholar
Charó, MP, Gordillo, S, Fucks, EE, Giaconi, LM. 2014. Late Quaternary molluscs from the northern San Matías Gulf (Northern Patagonia, Argentina), southwestern Atlantic: Faunistic changes and paleoenvironmental interpretation. Quaternary International 352:2647.Google Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268:867870. doi: 10.1016/j.nimb.2009.10.051.Google Scholar
Coe, HHG, Souza, RCCL, Duarte, MR, Ricardo, SDF, Machado, DOBF, Macario, KCD, Silva, EP. 2017. Characterisation of phytoliths from the stratigraphic layers of the Sambaqui da Tarioba (Rio das Ostras, RJ, Brazil). Flora 236–237:182.Google Scholar
Corrêa, IC. 1996. Les variations du niveau de la mer durant les derniers 17.500 ans BP: l’exemple de la plate-forme continentale du Rio Grande do Sul-Brésil. Marine Geology 130(1–2):163178.Google Scholar
Costa, MD, Muelbert, JH, Moraes, LE, Vieira, JP, Castello, JP. 2014. Estuarine early life stage habitat occupancy patterns of whitemouth croaker Micropogonias furnieri (Desmarest, 1830) from the Patos Lagoon, Brazil. Fisheries Research 160:7784.Google Scholar
Denadai, MR, Santos, FB, Bessa, E, Fernandez, WS, Luvisaro, C, Turra, A. 2015. Feeding habits of whitemouth croaker Micropogonias furnieri (Perciformes: Sciaenidae) in Caraguatatuba Bay, southeastern Brazil. Brazilian Journal of Oceanography 63(2):125134.Google Scholar
Détienne, P, Jacquet, P. 1983. Atlas d’identification des bois de l’Amazonie et des régions voisines. Montpellier: Centre Technique Forestier Tropical.Google Scholar
Dias, GT, Kjerfve, B. 2009. Barrier and beach ridge systems of the Rio de Janeiro coast. In: Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Heidelberg/Berlin: Springer. p 225252.Google Scholar
Douglas, PM, Pagani, M, Eglinton, TI, Brenner, M, Hodell, DA, Curtis, JH, Ma, KF, Breckenridge, A. 2014. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records. Geochimica et Cosmochimica Acta 141:346364.Google Scholar
Ferreira, FA, Freire, BP, Souza, JTA, Cortez-Vega, WR, Prentice, C. 2013. Evaluation of physicochemical and functional properties of protein recovered obtaining from whitemouth croaker (Micropogonias furnieri) byproducts. Food and Nutrition . Sciences 4:580585.Google Scholar
Franchito, SH, Rao, VB, Stech, JL, Lorenzzetti, JA. 1998. The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment. Ann. Geophys. 16:866881. http://dx.doi.org/10.1007/s005850050656.Google Scholar
Froyd, CA, Willis, KJ. 2008. Emerging issues in biodiversity & conservation management: the need for a palaeoecological perspective. Quaternary Science Review 27:17231732.Google Scholar
Fürsich, FT. 1995. Approaches to palaeoenvironmental reconstructions. Geobios 18:183195.Google Scholar
Golfieri, GA, Ferrero, L, Zarta, M. 1998. Tafonomia y paleoecología de Tagelus plebeius (Lightfoot, 1786) (Mollusca, Bivalvia) em sedimentos holocenos del Rio Quequén Grande, Provincia de Buenos Aires, Argentina. Ameghiniana 35(3):255264.Google Scholar
Gonçalves, AA, Passos, MG. 2010. Restructured fish product from white croaker(Micropogonias furnieri) mince using microbial transglutaminas. Brazilian Archives of Biology and Technology 53(4):987995.Google Scholar
Gordillo, S, Rabassa, J, Coronato, A. 2008. Paleoecology and paleobiogeographic patterns of mid-Holocene mollusks from the Beagle Channel (southern Tierra del Fuego, Argentina). Revista Geológica de Chile 35(2):321333.Google Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4):18891903.Google Scholar
Holmquist, JR, Reynolds, L, Brown, LN, Southon, JR, Simms, AR, MacDonald, GM. 2015. Marine radiocarbon reservoir values in southern California estuaries: interspecies, latitudinal, and interannual variability. Radiocarbon 57(3):449458.Google Scholar
Ikeda, Y, Miranda, LB, Rock, NJ. 1974. Observations on stages of upwelling in the region of Cabo Frio (Brazil) as conducted by continuous surface temperature and salinity measurements. Bol. do Inst. Ocean. São Paulo 23:3346.Google Scholar
Jesus, PB, et al. 2017. Holocene paleo-sea level in southeastern Brazil: an approach on vermetids shells. J. Sed. Env 2(1):3548.Google Scholar
Keaveney, EM, Reimer, PJ, Foy, RH. 2015. Carbon cycling in a complex lake: a novel use of Delta 14C. Abstracts of December AGU Fall Meeting.Google Scholar
Keaveney, EM, Reimer, PJ, Foy, RH. 2015. Young, old, and weathered carbon-part 1: using radiocarbon and stable isotopes to identify carbon sources in an alkaline, humic lake. Radiocarbon 57(3):407423.Google Scholar
Kim, ST, Coplen, TB, Horita, J. 2015. Normalization of stable isotope data for carbonate minerals: Implementation of IUPAC guidelines. Geochimica et Cosmochimica Acta 158:276289.Google Scholar
Lessa, DV, Venancio, IM, dos Santos, TP, Belem, AL, Turcq, BJ, Sifeddine, A, Albuquerque, ALS. 2016. Holocene oscillations of southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, south- eastern Brazil). The Holocene. http://dx.doi.org/10.1177/0959683616638433.Google Scholar
Lopes, MS, Bertucci, TCP, Rapagnã, L, de Almeida Tubino, R, Monteiro-Neto, C, Tomas, ARG, Tenório, MC, Lima, T, Souza, R, Carrillo-Briceño, JD, Haimovici, M. 2016. The path towards endangered species: prehistoric fisheries in southeastern Brazil. PloS One 11(6), p e0154476.Google Scholar
Macario, K, Alves, EQ. 2018. Efeito de reservatório marinho na costa do Brasil. Quaternary and Environmental Geosciences 1. 9(1).Google Scholar
Macario, KD, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilera, O, Tenório, MC, Rapagnã, LC, Douka, K, Silva, E. 2016. The Usiminas shellmound on the Cabo Frio Island: marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology 35:3642.Google Scholar
Macario, KD, Alves, EQ, Moreira, VN, Oliveira, FM, Chanca, IS, Jou, RM, Diaz, M. 2017. Fractionation in the graphitization reaction for 14C-AMS analysis: The role of Zn× the role of TiH2. International Journal of Mass Spectrometry 423:3945.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55:325330.Google Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015a. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.Google Scholar
Macario, KD, Oliveira, FM, Carvalho, C, Santos, GM, Xu, X, Chanca, IS, Alves, EQ, Jou, RM, Oliveira, MI, Pereira, BB, Moreira, V. 2015b. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:402405.Google Scholar
Martínez, S, Rojas, A, Ubilla, M, Verde, M, Perea, D, Piñeiro, G. 2006. Molluscan assemblages from the marine Holocene of Uruguay: composition, geochronology, and paleoenvironment signals. Ameghiniana 43(2):385397.Google Scholar
Metcalfe, CR, Chalk, L. 1950. Anatomy of the Dicotyledons. Clarendon Press. p 1500.Google Scholar
Mianzan, H, Lasta, C, Acha, E, Guerrero, R, Macchi, G, Bremec, C. 2001. The Rio de la Plata estuary, Argentina-Uruguay. In: Coastal Marine Ecosystems of Latin America. Berlin/Heidelberg: Springer. p 185204.Google Scholar
Milheira, RG, Macario, KD, Chanca, IS, Alves, EQ. 2017. Archaeological earthen mound complex in Patos Lagoon, Southern Brazil: chronological model and freshwater influence. Radiocarbon 59(1):195214.Google Scholar
Militelli, MI, Macchi, GJ, Rodrigues, KA. 2013. Comparative reproductive biology of Sciaenidae family species in the Río de la Plata and Buenos Aires Coastal Zone, Argentina. Journal of the Marine Biological Association of the United Kingdom 93(2):413423.Google Scholar
Milne, GA, Long, AJ, Bassett, SE. Modelling Holocene relative sea-level observations from the Caribbean and South America. 2005. Quaternary Science Reviews 24(10–11):11831202.Google Scholar
Nagai, RH, Sousa, SH, Burone, L, Mahiques, MM. 2009. Paleoproductivity changes during the Holocene in the inner shelf of Cabo Frio, southeastern Brazilian continental margin: Benthic foraminifera and sedimentological proxies. Quaternary International 206(1–2):6271.Google Scholar
Olsen, J, Rasmussen, P, Heinemeier, J. 2009. Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38:458470.Google Scholar
Olsen, J, Ascough, P, Lougheed, BC, Rasmussen, P. 2017. Radiocarbon dating in estuarine environments. applications of paleoenvironmental techniques in estuarine studies. In: Weckström K, Saunders KM, Gell PA, Skilbeck CG, editors. Developments in Paleoenvironmental Research. Dordrecht, Netherlands: Springer. p 141170.Google Scholar
Owen, BD. 2002. Marine carbon reservoir age estimates for the far south coast of Peru. Radiocarbon 44(3):701708.Google Scholar
Patillo, ME, Czapla, TE, Nelson, DM, Mónaco, EM. 1997. Distribution and Abundance of Fishes and Invertebrates in Gulf of Mexico Estuaries. Vol. II. Species Life History Summaries. ELMR Report 11. NOAA/NOS Strategic Environmental Assessments Division, Silver Spring, MD .Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rodrigues, RR, Lorenzzetti, JA. 2001. A numerical study of the effects of bottom topography and coastline geometry on the southeast Brazilian coastal upwelling. Cont. Shelf Res. 21:371394. http://dx.doi.org/10.1016/S0278-4343(00)00094-7.Google Scholar
Santana-Sagredo, F, Schulting, R, Lee-Thorp, J, Agüero, C, Uribe, M, Lemp, C. 2017. Paired radiocarbon dating on human samples and camelid fibers and textiles from northern Chile: the case of pica 8 (Tarapacá). Radiocarbon 59(4):11951213.Google Scholar
Scheel-Ybert, R. 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500–1400 yr BP deduced from charcoal analysis. Review of Palaeobotany and Palynology 110:111138.Google Scholar
Scheel-Ybert, R. 2014. Landscape and use of plants by Southern and Southeastern Brazilian shell mound builders. In: Roksandic M, Mendonça de Souza SMF, Eggers S, Burchell M, Klokler D, editors. The Cultural Dynamics of Shell-Matrix Sites. Albuquerque (NM): University of New Mexico Press. p 289300.Google Scholar
Scheel-Ybert, R. 2016. Charcoal collections of the world. IAWA Journal 37(3):489505.Google Scholar
Silva, EP, Pádua, SC, Souza, RCCL, Duarte, MR. 2017. Shell mounds of the southeast coast of Brazil: recovering information on past malacological biodiversity. In: Mondini M, Muñoz AG, Fernandez PM, editors. Zooarchaeology in the Neotropics. Springer International Publishing. p 4760.Google Scholar
Souza, RCCL, Lima, TA, Duarte, MR, Silva, EP. 2016. Changes in patterns of biodiversity of marine mollusks along the Brazilian coast during the late Holocene inferred from shell-mound (sambaquis) data. The Holocene 26(11):18021809.Google Scholar
Souza Faria, RG, de Souza, CL, Cristina, R. 2014. Biodiversity of marine molluscs from Sambaqui da Tarioba, Rio das Ostras, Rio de Janeiro (Brazil). Revista Chilena de Antropología 1:29.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2):9801021.Google Scholar
Suguio, K. 2010. Geologia do Quaternário e Mudanças Ambientais. São Paulo, Brazil: Oficina de Textos. 408, p.Google Scholar
Sylvestre, F, Sifeddine, A, Turcq, B, Gil, IM, Albuquerque, AL, Lallier-Verges, E, Abrao, J. 2005. Hydrological changes related to the variability of tropical South American climate from the Cabo Frio lagoonal system (Brazil) during the last 5000 years. The Holocene 15(4):625630.Google Scholar
Taylor, RE, Southon, J, Des Lauriers, MR. 2007. Holocene marine reservoir time series ∆R values from Cedros Island, Baja California. Radiocarbon 49(2):899904.Google Scholar
Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.Google Scholar
Turcq, B, Martin, L, Flexor, JM, Suguio, K, Pierre, C, Tasayaco-Ortega, L. 1999. Origin and evolution of the Quaternary coastal plain between Guaratiba and Cabo Frio, State of Rio de Janeiro, Brazil. Série Geoquimica Ambiental 6:2546.Google Scholar
Venancio, IM, Belem, AL, dos Santos, THR, Zucchi, MDR, Azevedo, AEG, Capilla, R, Albuquerque, ALS. 2014. Influence of continental shelf processes in the water mass balance and productivity from stable isotope data on the southeastern Brazilian coast. Journal of Marine Systems 139:241247. http://dx.doi.org/10.1016/j.jmarsys.2014.06.009.Google Scholar
Venancio, IM, Franco, D, Belem, AL, Mulitza, S, Siccha, M, Albuquerque, ALS, Schulz, M, Kucera, M. 2016a. Planktonic foraminifera shell fluxes from a weekly resolved sediment trap record in the southwestern Atlantic: evidence for synchronized reproduction. Mar. Micropaleontol. 125:2535, http://dx.doi.org/10. 1016/j.marmicro.2016.03.003.Google Scholar