Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T01:03:58.281Z Has data issue: false hasContentIssue false

Investigating Subantarctic 14C Ages of Different Peat Components: Site and Sample Selection for Developing Robust Age Models in Dynamic Landscapes

Published online by Cambridge University Press:  10 June 2019

Zoë A Thomas*
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
Chris S M Turney
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
Alan Hogg
Affiliation:
Waikato Radiocarbon Laboratory, University of Waikato, Hamilton, New Zealand
Alan N Williams
Affiliation:
Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia Extent Heritage Pty Ltd, Pyrmont, NSW, Australia
Chris J Fogwill
Affiliation:
Palaeontology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia School of Geography, Geology and the Environment, Keele University, Newcastle-under-Lyme, UK
*
*Corresponding author. Email: [email protected].

Abstract

Precise radiocarbon (14C) dating of sedimentary sequences is important for developing robust chronologies of environmental change, but sampling of suitable components can be challenging in highly dynamic landscapes. Here we investigate radiocarbon determinations of different peat size fractions from six peat sites, representing a range of geomorphological contexts on the South Atlantic subantarctic islands of the Falklands and South Georgia. To investigate the most suitable fraction for dating, 112 measurements were obtained from three components within selected horizons: a fine fraction <0.2 mm, a coarse fraction >0.2 mm, and bulk material. We find site selection is critical, with locations surrounded by high-ground and/or relatively slowly accumulating sites more susceptible to the translocation of older carbon. Importantly, in locations with reduced potential for redeposition of material, our results show that there is no significant or systematic difference between ages derived from bulk material, fine or coarse (plant macrofossil) material, providing confidence in the resulting age model. Crucially, in areas comprising complex terrain with extreme relief, we recommend dating macrofossils or bulk carbon rather than a fine fraction, or employing comprehensive dating of multiple sedimentary fractions to determine the most reliable fraction(s) for developing a robust chronological framework.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amesbury, MJ, Roland, TP, Royles, J, Hodgson, DA, Convey, P, Griffiths, H, Charman, DJ. 2017. Widespread biological response to rapid warming on the Antarctic Peninsula. Current Biology 27(11):16161622.e2. doi: 10.1016/j.cub.2017.04.034.CrossRefGoogle ScholarPubMed
Barrow, C. 1978. Postglacial pollen diagrams from South Georgia (Sub-Antarctic) and West Falkland island (South Atlantic). Journal of Biogeography 5(3):251274. doi: 10.2307/3038040.CrossRefGoogle Scholar
Bentley, MJ, Evans, DJA, Fogwill, CJ, Hansom, JD, Sugden, DE, Kubik, PW. 2007. Glacial geomorphology and chronology of deglaciation, South Georgia, Sub-Antarctic. Quaternary Science Reviews 26(5–6):644677. doi: 10.1016/j.quascirev.2006.11.019.CrossRefGoogle Scholar
Berg, S, White, DA, Jivcov, S, Melles, M, Leng, MJ, Rethemeyer, J, Allen, C, Perren, B, Bennike, O, Viehberg, F. 2019. Holocene glacier fluctuations and environmental changes in subantarctic South Georgia inferred from a sediment record from a coastal inlet. Quaternary Research 91(1):132148. doi: 10.1017/qua.2018.85.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3):457474. doi: 10.1214/11-BA618.Google Scholar
Blaauw, M, van der Plicht, J, van Geel, B. 2004. Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported “reservoir effect”? Quaternary Science Reviews 23(14–15):15371542. doi: 10.1016/j.quascirev.2004.04.002.CrossRefGoogle Scholar
Blockley, SPE, Lane, CS, Hardiman, M, Rasmussen, SO, Seierstad, IK, Steffensen, JP, Svensson, A,Lotter, AF, Turney, CSM, Bronk, Ramsey C. 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE 1 event stratigraphy to 48,000 b2k. Quaternary Science Reviews 36:210. doi: 10.1016/j.quascirev.2011.09.017.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk, Ramsey C. 2010. Current pretreatment methods for ams radiocarbon dating at the oxford radiocarbon accelerator unit (ORAU). Radiocarbon 52(1):103112. doi: 10.1017/S0033822200045069.CrossRefGoogle Scholar
Brock, F, Lee, S, Housley, RA, Bronk, Ramsey C. 2011. Variation in the radiocarbon age of different fractions of peat: a case study from Ahrenshöft, Northern Germany. Quaternary Geochronology 6(6):550555. doi: 10.1016/j.quageo.2011.08.003.CrossRefGoogle Scholar
Bronk, Ramsey C. 2017. OxCal program, version 4.3.Google Scholar
Bronk, Ramsey C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730. doi: 10.2458/azu_js_rc.55.16215.Google Scholar
Chu, Z, Sun, L, Huang, W, Huang, T, Zhou, X. 2016. On selecting bulk fjord sediment samples for radiocarbon dating in Fildes Peninsula, Antarctica. Quaternary International 425:173182. doi: 10.1016/j.quaint.2015.10.118.Google Scholar
Clark, R, Huber, UM, Wilson, P. 1998. Late Pleistocene sediments and environmental change at Plaza Creek, Falkland Islands, South Atlantic. Journal of Quaternary Science 13(2):95105.10.1002/(SICI)1099-1417(199803/04)13:2<95::AID-JQS351>3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle Scholar
Cook, AJ, Poncet, S, Cooper, APR, Herbert, DJ, Christie, D. 2010. Glacier retreat on South Georgia and implications for the spread of rats. Antarctic Science 22(3):255263. doi: 10.1017/s0954102010000064.CrossRefGoogle Scholar
Gallego-Sala, AV, Charman, DJ, Brewer, S, Page, SE, Prentice, IC, Friedlingstein, P, Moreton, S, Amesbury, MJ, Beilman, DW, Björck, S et al. 2018. Latitudinal limits to the predicted increase of the Peatland carbon sink with warming. Nature Climate Change 8:907913. doi: 10.1038/s41558-018-0271-1.Google Scholar
Gordon, JE, Haynes, VM, Hubbard, A. 2008. Recent glacier changes and climate trends on South Georgia. Global Planetary Change 60(1–2):7284. doi: 10.1016/j.gloplacha.2006.07.037.CrossRefGoogle Scholar
Hill, TCB, Hill, GE, Brunning, R, Banerjea, RY, Fyfe, RM, Hogg, AG, Jones, J, Perez, M, Smith, DN. 2019. Glastonbury lake village revisited: a multi-proxy palaeoenvironmental investigation of an Iron Age wetland settlement. Journal of Wetland Archaeology 18(2):115137. doi: 10.1080/14732971.2018.1560064.CrossRefGoogle Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCAL13 Southern Hemisphere calibration, 0–50, 000 years cal BP. Radiocarbon 55(4):18891903.10.2458/azu_js_rc.55.16783CrossRefGoogle Scholar
Holmquist, JR, Finkelstein, SA, Garneau, M, Massa, C, Yu, Z, MacDonald, GM. 2016. A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-arctic Peatlands. Quaternary Geochronology 31:5361. doi: 10.1016/j.quageo.2015.10.003.CrossRefGoogle Scholar
Howarth, JD, Fitzsimons, SJ, Jacobsen, GE, Vandergoes, MJ, Norris, RJ. 2013. Identifying a reliable target fraction for radiocarbon dating sedimentary records from lakes. Quaternary Geochronology 17:6880. doi: 10.1016/j.quageo.2013.02.001.CrossRefGoogle Scholar
IPCC AR5. 2013. Climate change 2013: the physical science basis. In: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM, editors. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press.Google Scholar
Ivanov, KE. 1981. Water movement in Mirelands. London: Academic Press.Google Scholar
Jones, JM, Gille, ST, Goosse, H, Abram, NJ, Canziani, PO, Charman, DJ, Clem, KR, Crosta, X, de Lavergne, C, Eisenman, I et al. 2016. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change 6(10):917926. doi: 10.1038/nclimate3103.Google Scholar
Joosten, H, De Klerk, P. 2007. In search of finiteness: the limits of fine-resolution palynology of Sphagnum peat. Holocene 17(7):10231031. doi: 10.1177/0959683607082416.CrossRefGoogle Scholar
Kershaw, PA, McKenzie, G, Porch, N, Roberts, RG, Brown, J, Heijnis, H, Orr, ML, Jacobson, G, Newall, PR. 2007. A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, Southeastern highlands of Australia. Journal of Quaternary Science 22(8):481500. doi: 10.1002/jqs.CrossRefGoogle Scholar
Kilian, MR, van Geel, B, van der Plicht, J. 2000. 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quaternary Science Reviews 19:10111033. doi: 10.1016/S0277-3791(99)00049-9.CrossRefGoogle Scholar
Lister, D, Jones, P. 2014. Long-term temperature and precipitation records from the Falkland Islands. International Journal of Climatology 35(7):12241231. doi: 10.1002/joc.4049.CrossRefGoogle Scholar
Lowe, JJ, Walker, MJC. 1997. Reconstructing quaternary environments. 2nd edition. London: Routledge.Google Scholar
Martin, L, Goff, J, Jacobsen, G, Mooney, S. 2018. The radiocarbon ages of different organic components in the Mires of Eastern Australia. Radiocarbon 61(1):112. doi: 10.1017/RDC.2018.118.Google Scholar
McGlone, MS, Turney, CSM, Wilmshurst, J. 2014. Late-glacial and Holocene vegetation and climatic history of the Cass Basin, central South Island, New Zealand. Quaternary Research 62:267279.CrossRefGoogle Scholar
McGlone, MS, Turney, CSM, Wilmshurst, JM, Renwick, J, Pahnke, K. 2010. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18, 000 years. Nature Geoscience 3(9):622626. doi: 10.1038/ngeo931.CrossRefGoogle Scholar
McGlone, MS, Wilmshurst, JM. 1999. Dating initial Maori enviromental impact in New Zealand. Quaternary International 59:516.10.1016/S1040-6182(98)00067-6CrossRefGoogle Scholar
Nilsson, M, Klarqvist, M, Bohlin, E, Possnert, G. 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. Holocene 11(5):579586. doi: 10.1191/095968301680223521.CrossRefGoogle Scholar
Olsson, IU. 1986. Study of errors in 14C dates of peat and sediment. Radiocarbon 28(2):429435.CrossRefGoogle Scholar
Oppedal, LT, Bakke, J, Paasche, Ø, Werner, JP, van der Bilt, WGM. 2018. Cirque glacier on South Georgia shows centennial variability over the last 7000 years. Frontiers of Earth Science 6(2). doi: 10.3389/feart.2018.00002.Google Scholar
Orsi, AH, Whitworth, T, Nowlin, WD. 1995. On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Research Part I 42(5):641673. doi: 10.1016/0967-0637(95)00021-W.CrossRefGoogle Scholar
Oswald, WW, Anderson, PM, Brown, TA, Brubaker, LB, Feng, SH, Lozhkin, AV, Tinner, W, Kaltenrieder, P. 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15(5):758767. doi: 10.1191/0959683605hl849rr.CrossRefGoogle Scholar
Piotrowska, N, Blaauw, M, Mauquoy, D, Chambers, FM. 2011. Constructing deposition chronologies for peat deposits using radiocarbon dating. Mires and Peat 7(10):114. doi: 10.1111/j.1365-2486.2009.01920.x.Google Scholar
Rainsley, E, Turney, CSM, Golledge, NR, Wilmshurst, JM, McGlone, MS, Hogg, AG, Li, B, Thomas, ZA, Roberts, R, Jones, RT et al. 2019. Pleistocene glacial history of the New Zealand subantarctic islands. Climate of the Past 15:423448.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB. 2013a. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Ramsey, CB, Brown, DM, Buck, CE, Edwards, RL, Friedrich, M et al. 2013b. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55(4):19231945. doi: 10.2458/azu_js_rc.55.16955.Google Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in Stage 3. Radiocarbon 52(3):859865.CrossRefGoogle Scholar
Shore, JS, Bartley, DD, Harkness, DD. 1995. Problems encountered with the 14C dating of peat. Quaternary Science Reviews 14:373383.10.1016/0277-3791(95)00031-3CrossRefGoogle Scholar
Southon, J, Santos, G, Druffel-Rodriguez, K, Druffel, E, Trumbore, S, Xu, X, Griffin, S, Ali, S, Mazon, M. 2004. The Keck carbon cycle AMS laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46(1):4149.CrossRefGoogle Scholar
Strother, SL, Salzmann, U, Roberts, SJ, Hodgson, DA, Woodward, J, Van Nieuwenhuyze, W, Verleyen, E, Vyverman, W, Moreton, SG. 2015. Changes in Holocene climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia. The Holocene 25(2):263279. doi: 10.1177/0959683614557576.CrossRefGoogle Scholar
Thomas, ZA. 2016. Using natural archives to detect climate and environmental tipping points in the earth system. Quaternary Science Reviews 152:6071. doi: 10.1016/j.quascirev.2016.09.026.CrossRefGoogle Scholar
Thomas, ZA, Jones, RT, Fogwill, CJ, Hatton, J, Williams, A, Hogg, AG, Mooney, SD, Jones, PD, Lister, D, Mayewski, PA, Turney, CSM. 2018a. Evidence for increased expression of the Amundsen Sea Low over the South Atlantic during the late Holocene. Climate of the Past 14:17271738. doi: 10.5194/cp-14-1727-2018.Google Scholar
Thomas, Z, Turney, C, Allan, R, Colwell, S, Kelly, G, Lister, D, Jones, P, Beswick, M, Alexander, L, Lippmann, T, Herold, N, Jones, R. 2018b. A new daily observational record from Grytviken, South Georgia: exploring 20th century extremes in the South Atlantic. Journal of Climate 31(5):17431755. doi: 10.1175/JCLI-D-17-0353.1.CrossRefGoogle Scholar
Turetsky, MR, Manning, SW, Wieder, RK. 2004. Dating recent peat deposits. Wetlands 24(2):324356. doi: 10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2.CrossRefGoogle Scholar
Turney, CSM, Coope, GR, Harkness, DD, Lowe, JJ, Walker, MJC. 2000. Implications for the dating of Wisconsinan (Weichselian) Late-glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland. Quaternary Research 53(1):114121. doi: 10.1006/qres.1999.2087.CrossRefGoogle Scholar
Turney, CSM, Jones, RT, Lister, D, Jones, P, Williams, AN, Hogg, A, Thomas, ZA, Compo, GP, Yin, X, Fogwill, CJ et al. 2016a. Anomalous mid-twentieth century atmospheric circulation change over the South Atlantic compared to the last 6000 years. Environmental Research Letters 11(6):064009. doi: 10.1088/1748-9326/11/6/064009.Google Scholar
Turney, CSM, Jones, R, Fogwill, C, Hatton, J, Williams, AN, Hogg, A, Thomas, Z, Palmer, J, Mooney, S. 2016b. A 250 year periodicity in Southern Hemisphere westerly winds over the last 2600 years. Climate of the Past 12:189200. doi: 10.5194/cpd-11-2159-2015.CrossRefGoogle Scholar
Turney, CSM, Palmer, J, Maslin, MA, Hogg, A, Fogwill, CJ, Southon, J, Fenwick, P, Helle, G., Wilmshurst, JM, McGlone, M, et al. 2018. Global peak in atmospheric radiocarbon provides a potential definition for the onset of the Anthropocene Epoch in 1965. Scientific Reports 8(1):3293. doi: 10.1038/s41598-018-20970-5 CrossRefGoogle ScholarPubMed
van der Bilt, WGM, Bakke, J, Werner, JP, Paasche, Ø, Rosqvist, G, Vatle, SS. 2017. Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage little Ice Age on Subantarctic South Georgia. Journal of Quaternary Science 32(6):888901. doi: 10.1002/jqs.2937.CrossRefGoogle Scholar
van der Putten, N, Stieperaere, H, Verbruggen, C, Ochyra, R. 2004. Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. The Holocene 14(3):382392. doi: 10.1016/j.quascirev.2008.09.023.CrossRefGoogle Scholar
van der Putten, N, Verbruggen, C, Ochyra, R, Spassov, S, de Beaulieu, JL, De Dapper, M, Hus, J, Thouveny, N. 2009. Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica): based on a botanical macrofossil record. Quaternary Science Reviews 28(1–2):6579. doi: 10.1016/j.quascirev.2008.09.023.CrossRefGoogle Scholar
Wessel, P, Smith, WHF, Scharroo, R, Luis, J, Wobbe, F. 2013. Generic mapping tools: improved version released, Eos, Transactions. American Geophysical Union 94(45):409410. doi: 10.1002/2013EO450001.CrossRefGoogle Scholar
White, DA, Bennike, O, Melles, M, Berg, S, Binnie, SA. 2018. Was South Georgia covered by an ice cap during the Last Glacial Maximum? Geological Society, London, Special Publications 461(1):4959. doi: 10.1144/SP461.4.CrossRefGoogle Scholar
Wilson, P, Clark, R, Birnie, J, Moore, DM. 2002. Late Pleistocene and Holocene landscape evolution and environmental change in the Lake Sulivan area, Falkland Islands, South Atlantic. Quaternary Science Reviews 21(16–17):18211840. doi: 10.1016/S0277-3791(02)00008-2.CrossRefGoogle Scholar
Wüst, RAJ, Jacobsen, GE, van der Gaast, H, Smith, AM. 2008. Comparison of radiocarbon ages from different organic fractions in tropical peat cores: insights from Kalimantan, Indonesia. Radiocarbon 50(3):359372. doi: 10.1017/S0033822200053492.CrossRefGoogle Scholar