Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T12:51:46.063Z Has data issue: false hasContentIssue false

BIOINDICATORS OF SEA-LEVEL FLUCTUATIONS IN SOUTHEASTERN BRAZIL: NEW DATA AND METHODOLOGICAL REVIEW

Published online by Cambridge University Press:  16 July 2021

Julia Caon Araujo*
Affiliation:
Departamento de Geologia, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, Rio de Janeiro (RJ), Brazil
Kita Chaves Damasio Macario
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Vinícius Nunes Moreira
Affiliation:
Laboratório de Radiocarbono, Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói, RJ, Brazil
Anderson dos Santos Passos
Affiliation:
Instituto de Geociências, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
Perla Baptista de Jesus
Affiliation:
Instituto de Geociências, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
José Carlos Sícoli Seoane
Affiliation:
Departamento de Geologia, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 274, Ilha do Fundão, Rio de Janeiro (RJ), Brazil
Fabio Ferreira Dias
Affiliation:
Instituto de Geociências, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, Campus da Praia Vermelha, Boa Viagem, Niterói, RJ, Brazil
*
*Corresponding author. Email: [email protected]

Abstract

The vermetidae fossils of Petaloconchus varians, formed by calcium carbonate, associated with their radiocarbon ages, are the most accurate indicators of paleo sea level due to their restricted occupation in the intertidal zone in the rocky shore. However, the recrystallization of minerals can affect these age calculations and, consequently, the interpretation of the data. The aim of this study is to present new indicators of paleo sea-level changes in Southeast Brazil for the last 6000 years contributing to fill the data gap for the late Holocene. The influence of the recrystallization process was successfully resolved using the CarDS protocol, enabling the separation of the original aragonite fraction by density, prior to radiocarbon dating. This avoids the rejuvenation of ages and ensures greater efficiency for data interpretation. Paleo sea-level indicators were able to show a progressive increase in sea level up to the transgressive maximum of 4.15 m in 3700 BP years, followed by a regression to the current zero. This regression seems to have in addition, here we reinforce the reliability of the use of fossil vermetids as indicators of sea-level fluctuations.

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Suguio, K. 2015. Radiocarbon Reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035. doi: 10.1016/j.quageo.2015.05.006.CrossRefGoogle Scholar
Angulo, RJ, Giannini, PCF, Suguio, K, Pessenda, LCR. 1999. Relative seac level changes during the last 5500 years in the Laguna-Imbituba region (Santa Catarina, Brazil), based on vermetid radiocarbon ages. Marine Geology 159:323339.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC. 1997. The Brazilian sea level curves: a critical review with emphasis on the curves from the Paranaguá and Cananéia regions. Marine Geology 140:141166.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC, Souza, MC. 2006. A critical review of mid- to lateHolocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Review 25:486506.CrossRefGoogle Scholar
Angulo, RJ, Pessenda, LCR, de Souza, MC. 2002. O significado das datações ao 14C na reconstrução de paleoníveis marinhos e na evolução das barreiras quaternárias do litoral paraense. Revista Brasileira de Geociências 32:195–106.CrossRefGoogle Scholar
Angulo, RJ, Souza, CM. 2014. Conceptual review of Quaternary coastal paleo-sea level indicators from Brazilian coast. Quaternary and Environments Geosciences 5(2):132.Google Scholar
Areias, C, Spotorno-Oliveira, P, Bassi, D, Iryu, Y, Nash, M, Castro, JWA, Tâmega, FTS. 2020. Holocene sea-surface temperatures and related coastal upwelling regime recorded by vermetid assemblages, southeastern Brazil (Arraial do Cabo, RJ). Marine Geology 425 (2020): 106183. doi: 10.1016/j.margeo.2020.106183.CrossRefGoogle Scholar
Baker, RGV, Haworth, RJ. 1997. Further evidence from relic shellcrust sequences for a late Holocene higher sea level for eastern Australia. Marine Geology 141:19.CrossRefGoogle Scholar
Baker, RGV, Haworth, RJ, Flood, PG. 2001. Warmer or cooler late Holocene marine palaeoenvironments? Interpreting southeast Australian and Brazilian sea-level changes using fixed biological indicators and their δ 18O composition. Palaeogeography, Palaeoclimatology, Palaeoecology 168:34:249–272.CrossRefGoogle Scholar
Bathurst, RGC. 1972. Carbonate sediments and their diagenesis. Elsevier.Google Scholar
Breves-Ramos, A, Junqueira, AOR, Lavrado, HP, Silva, SHG, Ferreira-Silva, MA. 2010. Population structure of the invasive bivalve isognomon bicolor on rocky shores of Rio de Janeiro State (Brazil). Journal of Marine Biological Association of United Kingdom 90(3):453459.CrossRefGoogle Scholar
Castro, JWA, Suguio, K, Seoane, JCS, Cunha, AM, Dias, FF. 2014. Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern Brazil. Anais da Academia Brasileira de Ciências 86(2):671683. doi: 10.1590/0001-3765201420140007.CrossRefGoogle Scholar
Castro, JWA, Seoane, JCS, Cunha, AM, Malta, JV, Oliveira, CA, Vaz, SR, Suguio, K. 2018. Comments to Angulo et al. 2016 on “Sea-level fluctuations and coastal evolution in the state of Rio de Janeiro, southeastern - Brazil” by Castro et al. 2014. Anais da Academia Brasileira de Ciências 90(2):13691375.CrossRefGoogle Scholar
Cavalcante, SLS. 2010. Estudo da influência da dinâmica da plataforma continental nas baías de Ilha Grande e Sepetiba via aninhamento de modelo numérico costeiro à modelo numérico oceânico. Rio de Janeiro, RJ: COPPE/UFRJ, Tese de Doutorado em Engenharia Oceânica. 127 p.Google Scholar
Cunha, AM, Castro, JWA, Carvalho, MA. 2018. Holocene shell accumulations from the Cabo Frio coastal plain, southeastern Brazil: taxonomy, taphonomy, geochronology and paleoenvironmental implications. Ameghiniana 55:5574.CrossRefGoogle Scholar
Delibrias, G, Laborel, J. 1969. Recent variations of the sea level along the Brazilian coast. Quaternaria 14:4549.Google Scholar
Dias, FF. 2009. Variations of Level Relative to the Sea in the Coastal Plain of Cabo Frio and Armação dos Búzios - RJ: Holocene Paleoambiental Reconstruction and Future Scenarios [PhD thesis]. Postgraduate Program in Geology, Federal University of Rio de Janeiro, Rio de Janeiro. 145 p.Google Scholar
Dias, FF, Breves-Ramos, A, Pimenta, AD, Junqueira, AOR, Seoane, JCS, Castro, JWA, Ramos, RRC. 2011. Occurrence of aggregates of live vermin and fossils in rocky shores in the South Atlantic. XIII Congresso da Associação Brasileira de Estudos do Quaternário ABEQUA.Google Scholar
Douka, K, Hedges, REM, Higham, TFG. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52:735775.CrossRefGoogle Scholar
Hajdas, I. 2008. Radiocarbon dating and its applications in Quaternary studies. Eiszeitalter und Gegenwart Quaternary Science Journal 57:124.Google Scholar
Inea – Instituto Estadual do Ambiente. 2015. Diagnóstico do Setor Costeiro da Baía da Ilha Grande. Subsídios a Elaboração do Zoneamento Ecológico-Econômico Costeiro. Volume I, Rio de Janeiro. p. 244.Google Scholar
Jesus, PBJ, Dias, FF, Muniz, RA., Macário, KDC., Seoane, JCS, Quattrociocchi, DSG, Cassab, RTC, Aguilera, O, Souza, RCCL, Alvez, EQ, Chanca, IS, Carvalho, CRA, Araujo, JC. 2017. Holocene Paleo-sea level in southeastern Brazil: an approach based on vermetids shells. Sedimentary Environments 2(1):548.Google Scholar
Laborel, J. 1986. Vermetid gastropods as sea-level indicators. In: Van de Plassche, O, editor. Sea-level research: a manual for the collection and evaluation of Data. Norwich: Geo Books. p. 281310.CrossRefGoogle Scholar
Lewis, SE, Wust, RAJ, Webster, JM, Shields, GA. 2008. Mid-late Holocene sea-level variability in eastern Australia. Terra Nova 20(1):7481.CrossRefGoogle Scholar
Lima, CCU. 2010. Evidências da ação tectônica nos sedimentos da Formação Barreiras presentes do litoral de Sergipe e ao norte da Bahia. Revista de Geografia. Recife:UFPE-DCG/NAPA, v. especial VIII SINAGEO,1. p. 140–151.Google Scholar
Macario, K, Alves, EQ. 2018. Efeito de reservatório marinho na costa do Brasil. Quaternary and Environmental Geosciences 9:1117.CrossRefGoogle Scholar
Malta, JV, Castro, JWA. 2018. Petrography, stable isotopes and geochronology of beachrocks from the coastline of Rio de Janeiro State, SE Brazil. Anuário do Instituto de Geociências, Federal University of Rio de Janeiro 41(1):232244.CrossRefGoogle Scholar
Martinez, S, Rojas, A. 2013. Relative sea level during the Holocene in Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology 374: 123131. doi: 0.1016/j.palaeo.2013.01.010.CrossRefGoogle Scholar
Martin, L, Suguio, K. 1976. Etude pr éliminaire du Quaternaire marin: Comparaison du littoral de São Paulo et de Salvador de Bahia (Brésil). Cah. O.R.S.T.O.M., Sér. Géol. VIII (1):3347.Google Scholar
Martin, L, Suguio, K. 1978. Excursion route along the coastline between the town of Cananéia (state of São Paulo) and Guaratiba outlet (state of Rio de Janeiro). In: International Symposium on Coastal Evolution, Special Publication 2. p. 1–98.Google Scholar
Martin, L, Suguio, K, Flexor, JM, Bittencourt, ACSP, Vilas-Boas, GS. 1979–1980. Le quaternaire marin brésilien (littoral pauliste, sud fluminense et bahianais). Cahiers O.R.S.T.O.M., Série Géologie 11:95124.Google Scholar
Martin, L, Bittecourt, ACSP, Flexor, JM, Vilas-Boas, GS. 1984. Evidencia de um tectonismo quaternário nas costas do Estado da Bahia. 33° Congresso Brasileiro de Geologia, Rio de Janeiro, SBG,1, 19-35.Google Scholar
Martin, l, Suguio, K. 1989. Excursion route along the Brazilian coast between Santos (SP) and Campos (RJ) (North of State of Rio de Janeiro). In: International Symposium on Global Changes in South America during the Quaternary, Special Publication 2:1–136.Google Scholar
Martin, L, Dominguez, JML, Bittencourt, ACSP. 2003. Fluctuating Holocene sea levels in Eastern and Southeastern Brazil: Evidence from multiple fossil and geometric indicators. Journal of Coastal Research 19(1):101124.Google Scholar
Mendonça, MLTG, Godoy, JM. 2004. Datação radiocarbônica de sítios arqueológicos do tipo sambaqui pela técnica de absorção de CO2: uma alternativa à síntese benzênica. Química Nova 27(2):323325.CrossRefGoogle Scholar
Milne, AG, Long, , Bassett, ES. 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24:11831202.CrossRefGoogle Scholar
Moreira, VN, Macario, KD, Guimarães, RB, Dias, FF, Araújo, JC, Jesus, P, Douka, K. 2020. Aragonite fraction dating of vermetids in the context of paleo sea-level curves reconstruction. Radiocarbon 62(2):335348.CrossRefGoogle Scholar
Neves, CF, Muehe, D. 2008. Vulnerabilidade, Impactos e Adaptações a Mudanças do Clima: a Zona Costeira. http://www.antaq.gov.br/portal/pdf/meioambiente/publicacoes/2008mudancasclimaticascgee2008v080301.pdf. Access date: 06/29/2017.Google Scholar
Queiroz-Alves, E, Macario, K, Ascough, P, Ramsey, CB. 2018. The worldwide marine radiocarbon reservoir effect: definitions, mechanisms and prospects. Reviews of Geophysics 56:128.Google Scholar
Ramsay, PJ. 1996. 9000 years of sea-level change along the Southern African coastline. Quaternary International 31:7175.CrossRefGoogle Scholar
Ramsay, P, Cooper, J. 2002. Late Quaternary sea-level change in South Africa. Quaternary Research 57(1):8290.CrossRefGoogle Scholar
Ribeiro, PC, Giannini, PCF, Nascimento Junior, DR, Sayeg, IJ. 2011. Vermetídeos fósseis em costões rochosos de Guarapari, ES: distribuição espacial, morfologia, mineralogia e δ18O. XIII Congresso da Associação Brasileira de Estudos do Quaternário – ABEQUA. Armação dos Búzios, RJ. 5 p.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Schmalz, RF. 1967. Kinetics and diagenesis of carbonate sediments. Journal of Sedimentary Petrology 37(1): 6067.Google Scholar
Silenzi, S, Antonioli, F, Chemello, R. 2004. A new marker for sea surface temperature trend during the last centuries in temperate areas: vermetid reef. Global and Planetary Change 40: 105114.CrossRefGoogle Scholar
Sloss, CR, Murray-Wallace, CV, Jones, BG. 2007. Holocene sea-level change on the southeast coast of Australia: a review. The Holocene 17(7):9991014.CrossRefGoogle Scholar
Soares, MO, Meirelles, CAO, Lemos, VB. 2010. Distribuição espacial de vermetídeos (Mollusca: Gastropoda) no Atol das Rocas, Atlântico Sul equatorial. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais 5(2):225231.Google Scholar
Souza, CRG, Vilano, WF. 2015a. Utilização de Bandas de Paleolocas de Ouriços-do-Mar como Indicadores de Estabilização do Nível do Mar no Holoceno. XV Congresso da Associação Brasileira de Estudos do Quaternário – Abequa, Tramandaí/Imbé, Rio Grande do Sul, Brazil.Google Scholar
Souza, CRG, Sobrinho, JMA. 2015b. Beachrock De Ubatuba (Litoral Norte De São Paulo): Evidências De Oscilações Negativas E Positivas Do Nível Do Mar No Holoceno Médio A Superior. XV Congresso da Associação Brasileira de Estudos do Quaternário – Abequa, Tramandaí/Imbé, Rio Grande do Sul, Brazil.Google Scholar
Souza, TCS, Carvalho, MA, Dias, FF, Barreto, CF, Freitas, AS, Castro, JWA. 2016. Analysis of particulate organic matter in Holocene sediments of coastal plain from Pero Beach, Cabo Frio, Rio de Janeiro, Brazil. Journal of Sedimentary Environments 1(2):242253.CrossRefGoogle Scholar
Spotorno-Oliveira, P, Tâmega, FST, De Oliveira, CA, Castro, JWA, Coutinho, R, Iryu, Y, Bassi, D. 2016. Effects of Holocene sea-level changes on subtidal palaeoecosystems, southeastern Brazil. Marine Geology 381:1728.CrossRefGoogle Scholar
Suguio, K, Martin, L. 1996. The role of neotectonics in the evolution of the Brazilian coast. Geonomos 4(2):4553.Google Scholar
Suguio, K, Martin, L, Bittencourt, ACSP, Dominguez, JML, Flexor, JM, Azevedo, AEG. 1985. Relative sea level fluctuations during the Upper Quaternary along the Brazilian coast and its implications for coastal sedimentation. Brazilian Journal of Geosciences 15(4):273286.Google Scholar
Vescogni, A, Bosellini, FR, Reuter, M, Brachert, TC. 2008. Vermetid reefs and their use as palaeobathymetric markers: new insights from the Late Miocene 175 of the Mediterranean (Southern Italy, Crete). Palaeogeography, Palaeoclimatology, Palaeoecology 267:89101.CrossRefGoogle Scholar