Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T06:27:45.522Z Has data issue: false hasContentIssue false

AMS Dates of New Maize Specimens Found in Rock Shelters of the Tehuacan Valley

Published online by Cambridge University Press:  23 April 2018

Esperanza Torres-Rodríguez
Affiliation:
Grupo de Desarrollo Reproductivo y Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato 36821, Guanajuato, México
Miguel Vallebueno-Estrada
Affiliation:
Grupo de Desarrollo Reproductivo y Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato 36821, Guanajuato, México Grupo de Interacción Núcleo-Mitocondrial y Paleogenómica, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato 36821, Guanajuato, México
Javier Martínez González
Affiliation:
Instituto Nacional de Antropología e Historia, CP 06100 Mexico DF, Mexico
Angel García Cook
Affiliation:
Instituto Nacional de Antropología e Historia, CP 06100 Mexico DF, Mexico
Rafael Montiel
Affiliation:
Grupo de Interacción Núcleo-Mitocondrial y Paleogenómica, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato 36821, Guanajuato, México
Jean-Philippe Vielle-Calzada*
Affiliation:
Grupo de Desarrollo Reproductivo y Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV, Irapuato 36821, Guanajuato, México
*
*Corresponding author. Email: [email protected].

Abstract

A large collection of maize macro-specimens has been gathered from archaeological sites across the American continent, but only a few have been directly dated by accelerator mass spectrometry (AMS). We recently conducted two new excavations in several rock shelters of Tehuacán valley (San Marcos, Coxcatlán, and Purrón) and uncovered 132 non-manipulated macro-specimens of maize suitable for morphological and paleogenomic analysis, including many complete cobs, stalks, internodes, and leaves. Direct AMS dates for 43 samples found in San Marcos or Coxcatlán confirm the previously reported chronologies for these sites. By contrast, a cob found in Purrón was dated to 3060±30 before present (3360–3180 cal BP) (2σ), demonstrating that maize was present at that site at least 1500 calendar years earlier than previously expected, and suggesting that other specimens of similar age are still likely to be found in the southeastern region of the Tehuacán valley. A global comparison of macro-specimen chronology across the continent shows that the current archaebotanical record does not yet reflect the chronology of dispersal from central Mexico to northern or southern regions, opening the possibility for finding the missing links in subsequent expeditions within Mexico and Central America.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, G. 2006. The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers?. Oxford: Oxford University Press.Google Scholar
Benz, BF. 2001. Archaeological evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proceedings of the National Academy of Sciences 98:21042106.Google Scholar
Blake, M, Benz, B, Moreiras, D, Masur, L, Jakonsen, N, Wallace, R. 2017. Ancient Maize Map, version 2.1: an Online Database and Mapping Program for studying the Archaeology of Maize in the Americas. http://ancientmaize.com/. Vancouver: Laboratory of Archaeology, University of British Columbia.Google Scholar
Bronk Ramsey, C. 2013. OxCal 4.23 manual. Available at https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.html.Google Scholar
Buckler, ES, Holtsford, TP. 1996. Zea systematics: ribosomal ITS evidence. Molecular Biology and Evolution 13(4):612622.CrossRefGoogle ScholarPubMed
da Fonseca, RR, Smith, BD, Wales, N, Cappellini, E, Skoglund, P, Fumagalli, M, Samaniego, JA, Caroe, C, Ávila-Arccos, MC, Hufnagel, DE, Korneliussen, TS, Vieira, FG, Jakobsson, M, Arriaza, B, Willerslev, E, Nielsen, R, Hufford, MB, Albrechtsen, A, Ross_Ibarra, J, Gilbert, TP. 2015. The origin and evolution of maize in the southwestern United States. Nature Plants. 1, doi: 10.1038/nplants.2014.3.Google Scholar
Dávila, AP, Villaseñor, RJL, Medina, LR, Ramirez, RA, Salinas, TA, Sànchez-Ken, J, Tenorio, LP. 1993. Listados floristicos de México, Fasciculo X, Flora del Valle de Tehuacán-Cuicatlán. Instituto de Biología, UNAM. p 195.Google Scholar
Dávila, AP, Arizmendi, MdC, Valiente-Banuet, A, Villaseñor, JL, Casas, A, Lira, R. 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodiversity and Conservation 11:421442.Google Scholar
Doebley, JF. 1990. Molecular evidence and the evolution of Maize. Economic Botany 9:203218.Google Scholar
Doebley, J, Stec, A, Wendel, J, Edwards, M. 1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proceedings of the National Academy of Sciences 87:98889892.CrossRefGoogle ScholarPubMed
Doebley, J, Stec, A, Gustus, C. 1995. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333346.CrossRefGoogle ScholarPubMed
Dorweiler, J, Stec, A, Kermicle, J, Doebley, J. 1993. Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:233235.Google Scholar
Fuller, DQ. 2010. An emerging paradigm shift in the origins of agriculture. General Anthropology 17(2):112.Google Scholar
Fuller, DQ, Denham, T, Arroyo-Kalin, M, Lucas, L, Stevens, CJ, Qin, L, Allaby, RG, Purugganan, MD. 2014. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences 111:61476152.Google Scholar
Gepts, P, Famula, TR, Bettinger, RL, Brush, SB, Damania, AB, McGuire, PE, Qualset, CO. 2012. Biodiversity in Agriculture: Domestication, Evolution, and Sustainability. Cambridge: Cambridge University Press.Google Scholar
Grobman, A, Bonavia, D, Dillehay, TD, Piperno, DR, Iriarte, J, Holst, I. 2012. Preceramic Maize from Paredones and Huaca Prieta, Peru. Proceedings of the National Academy of Sciences 109(5):17551759.Google Scholar
Hubbard, L, McSteen, P, Doebley, J, Hake, S. 2002. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:19271935.Google Scholar
Jaenicke-Després, V, Buckler, ES, Smith, BD, Gilbert, MTP, Cooper, A, Doebley, J, Pääbo, S. 2003. Early allelic selection in maize as revealed by ancient DNA. Science 302(5648):12061208.Google Scholar
Johnson, F, MacNeish, RS. 1972. Chronometric dating. In: Johnson F, editor. The prehistory of the Tehuacan Valley Volume 4. Chronology and Irrigation. Austin (TX): University of Texas Press.Google Scholar
Kennett, DJ, Thakar, HB, VanDerwarker, AM, Webster, DL, Culleton, BJ, Harper, TK, Kistler, L, Scheffler, TE, Hirth, K. 2017. High-precision chronology for central american maize diversification from El Gigante rockshelter, Honduras. Proceedings of the National Academy of Sciences 34:90269031.CrossRefGoogle Scholar
Larson, G, Piperno, DR, Allaby, RG, Purugganan, MD, Andersson, L, Arroyo-Kalin, M, Barton, L, Vigueira-Climer, C, Denham, T, Dobney, K, Doust, AN, Gepts, P, Gilbert, MTP, Gremillion, KJ, Lucas, L, Lukens, L, Marshall, FB, Olsen, KM, Pires, JC, Richerson, PJ, Rubio de Casas, R, Sanjur, OI, Thomas, MG, Fuller, DQ. 2014. Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences 111(17):61396146.Google Scholar
Long, A, Benz, BF, Donahue, D, Jull, A, Toolin, L. 1989. First direct AMS dates on early maize from Tehuacán, Mexico. Radiocarbon 21:10351040.CrossRefGoogle Scholar
MacNeish, RS. 1958. Preliminary archaeological investigations in the Sierra de Tamaulipas Mexico. Transactions of the American Philosophical Society 48(6):1209.Google Scholar
MacNeish, RS. 1964. Ancient Mesoamerican Civilization. Science 143:531537.Google Scholar
MacNeish, RS. 1967. A summary of the subsistence. In: Byers DS, editor. The Prehistory of the Tehuacán Valley Volume 1. Austin (TX): University of Texas Press. p 290309.Google Scholar
MacNeish, RS. 1981. Tehuacan’s Accomplishments. Handbook of Middle American Indians, Supplement I: Archaeology. Austin (TX): University of Texas Press. p 31–47.Google Scholar
MacNeish, RS. 1985. The archaeological record on the problem of the domestication of corn. Science 143:171178.Google Scholar
MacNeish, RS, Cook, AG. 1972. Excavations in the San Marcos in the Travertine Slopes. In: MacNeish RS, editor. The Prehistory of the Tehuacán Valley Volume 5. Robert Peabody Foundation. Austin (TX): University of Texas Press. p 137160.Google Scholar
MacNeish, RS, Anderson, DB, Brunet, J, Callen, E, Chadwick, R, Culter, H, Flannery, K, Galinat, W, Kaplan, L, Smith, E, Stephens, S, Whitaker, T, Mangelsdorf, P. 1967. The Prehistory of the Tehuacan Valley, Robert Peabody Foundation. Austin (TX): University of Texas Press.Google Scholar
MacNeish, RS, Fowler, ML, Cook, GA, Peterson, FA, Nelken-Terner, A, Neely, JA. 1972. The Prehistory of the Tehuacán Valley. In: Byers DS, editor. The Prehistory of the Tehuacán Valley Volume 5. Austin (TX): University of Texas Press.Google Scholar
Mangelsdorf, PC, Macneish, RS, Galinat, WC. 1964. Domestication of corn. Science 143(3606):538545.Google Scholar
Mangelsdorf, P, MacNeish, R, Galinat, W. 1967. Prehistoric Wild and Cultivated Maize. Austin (TX): University of Texas Press.Google Scholar
Matsuoka, Y, Vigouroux, Y, Goodman, MM, Sanchez, J, Buckler, ES, Doebley, JF. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99:60806084.Google Scholar
Pearson, GW, Stuiver, M. 1986. High-precision calibration of the radiocarbon time scale, 500–2500 BC. Radiocarbon 28(2):839862.Google Scholar
Piperno, DR. 2011. The origins of plant cultivation and domestication in the New World tropics. Current Anthropology 52(S4):S453S470.CrossRefGoogle Scholar
Piperno, DR, Pearsall, DM. 1998. The Origins of Agriculture in the Lowland Neotropics. San Diego (CA): Academic.Google Scholar
Piperno, DR, Flannery, KV. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences 98:21012103.Google Scholar
Piperno, DR, Ranere, AJ, Holst, I, Iriarte, J, Dickau, R. 2009. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences 106:50195024.Google Scholar
Pohl, ME, Piperno, DR, Pope, KO, Jones, JG. 2007. Microfossil evidence of pre-Columbian maize dispersals in the Neotropics of San Andrés, Tabasco, Mexico. Proceedings of the National Academy of Sciences 104(16):68706875.Google Scholar
Price, D, Bar-Yosef, O. 2011. The origins of agriculture: new data, new ideas. Current Anthropology 52(S4):S163S173.Google Scholar
Ranere, AJ, Piperno, DR, Holst, I, Dickau, R, Iriarte, J. 2009. The cultural and chronological context of Early Holocene maize and squash domestication in the central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences 106(13):50145018.Google Scholar
Reimer, JP, Bard, E, Bayliss, A, Beck, JW. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Sigmon, B, Vollbrecht, E. 2010. Evidence of selection at the ramosa1 locus during maize domestication. Molecular Ecology 19(7):12961311.Google Scholar
Smith, CE. 1950. Prehistoric plant remains from Bat Cave. Botanical Museum Leaflets Harvard University 14:157180.Google Scholar
Smith, CE. 1965. The archaeological record of cultivated crops of New World origins. Economic Botany 19(4):323334.Google Scholar
Smith, BD. 1997. Reconsidering the Ocampo caves and the era of incipient cultivation in Mesoamerica. Latin American Antiquity 8(4):342383.Google Scholar
Smith, BD. 1998. The Emergence of Agriculture. New York: Science American Library.Google Scholar
Smith, BD. 2001. Documenting plant domestication: the consilience of biological and archaeological approaches. Proceedings of the National Academy of Sciences 98:13241326.Google Scholar
Smith, BD. 2005. Reassessing Coxcatlán Cave and the early history of domesticated plants in Mesoamerica. Proceedings of the National Academy of Sciences 102(27):94389445.Google Scholar
Studer, A, Zhao, Q, Ross-Ibarra, J, Doebley, J. 2011. Identification of a functional transposon insertion in the maize domestication gene tb1 . Nature Genetics 43(11):11601163.Google Scholar
Stuiver, M, Pearson, GW. 1986. High-precision calibration of the radiocarbon time scale, AD 1950–500 BC. Radiocarbon 28(2):805838.Google Scholar
Swarts, K, Gutaker, RM, Benz, B, Blake, M, Bukowski, R, Holland, J, Kruse-Peeples, M, Lepak, N, Prim, L, Romay, MC, Ross-Ibarra, J, Sanchez-Gonzalez, JJ, Schmidt, C, Schuenenmann, VJ, Krause, J, Matson, RG, Weigel, D, Buckler, ES, Burbano, HA. 2017. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357:512515.CrossRefGoogle ScholarPubMed
Upadyayula, N, da Silva, HS, Bohn, MO, Rocheford, TR. 2006. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theoretical and Applied Genetics 112(4):592606.Google Scholar
Valiente, BL. 1991. Patrones de precipitación en el valle semiárido de Tehuacán, Puebla, México [thesis]. Facultad de Ciencias, UNAM, México, DF. p 61.Google Scholar
Vallebueno-Estrada, M, Rodríguez-Arévalo, I, Rougon-Cardoso, A, Martínez-González, J, García-Cook, A, Montiel, R, Vielle-Calzada, JP. 2016. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proceedings of the National Academy of Sciences 113(49):1415114156.Google Scholar
Van Heerwaarden, J, Doebley, J, Briggs, W, Glaubitz, JC, Goodman, MM, Sanchez Gonzalez, J, Ross-Ibarra, J. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences 108:10881092.Google Scholar
Vavilov, NI. 1992. The Origin and Geography of Cultivated Plants. Cambridge: Cambridge University Press.Google Scholar
Villaseñor, JL, Dávila, PY, Chiang, F. 1990. Fitogeografía del Valle de Tehuacán-Cuicatlán. Boletín de la Sociedad Botánica de México 50:135149.Google Scholar
Vollbrecht, E, Springer, PS, Goh, L, Buckler, ES 4th, Martienssen, R. 2005. Architecture of floral branch systems in maize and related grasses. Nature 436(7054):11191126.Google Scholar
Wang, RL, Stec, A, Hey, J, Lukens, L, Doebley, J. 1999. The limits of selection during maize domestication. Nature 398:236239.Google Scholar
Supplementary material: File

Torres-Rodríguez et al. supplementary material

Torres-Rodríguez et al. supplementary material 1

Download Torres-Rodríguez et al. supplementary material(File)
File 181.2 KB