Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T07:59:40.045Z Has data issue: false hasContentIssue false

14C Dates and Spatial Statistics: Modeling Intrasite Spatial Dynamics of Urnfield Cemeteries in Belgium Using Case Study of Destelbergen Cemetery

Published online by Cambridge University Press:  18 July 2016

Jeroen De Reu*
Affiliation:
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
Guy De Mulder
Affiliation:
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
Mark van Strydonck
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Jean Bourgeois
Affiliation:
Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, 9000 Ghent, Belgium
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The possibility of radiocarbon dating on cremated bones stimulated a systematic 14C dating project investigating the chronology of Late Bronze Age and Early Iron Age urnfield cemeteries in Belgium. The growing amount of 14C dates on these cremated remains led to new insights into the chronology, development, and disappearance of the urnfield phenomenon. Consequently, ideas about cultural and historical processes need to be modified. Also, the internal chronology of the cemeteries is much more complex than previously thought, stimulating the need for techniques to analyze and visualize the internal development of an individual burial site. The application of centrographic methods like the mean center, standard distance circle, and standard deviational ellipse illustrates the possibilities for analyzing the internal chronology of the cemeteries based on the available 14C dates.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Ayhan, I, Cubukcu, KM. 2010. Explaining historical urban development using the locations of mosques: a GIS/spatial statistics-based approach. Applied Geography 30(2):229–38.CrossRefGoogle Scholar
Bishop, MA. 2007. Point pattern analysis of eruption points for the Mount Gambier volcanic sub-province: a quantitative geographical approach to the understanding of volcano distribution. Area 39(2):230–41.CrossRefGoogle Scholar
Bourgeois, J, Cherretté, B. 2005. L'âge de Bronze et le premier âge du Fer dans les Flandres Occidentale et Orientale (Belgique): un état de la question. In: Bourgeois, J, Talon, M, editors. L'âge du Bronze du nord de la France dans son contexte européen. Actes des congrès nationaux des sociétés historiques et scientifiques, 125e Lille, 2000. Paris: CTHS. p 4381.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Crombé, P, editor. 2005. The Last Hunter-Gatherer-Fishermen in Sandy Flanders (NW Belgium). The Verrebroek and Doel Excavation Projects. Volume 1: Palaeo-environment, Chronology and Features. Ghent: Academia Press. 334 p.Google Scholar
Crombé, P, Sergant, J, Lombaert, L, De Reu, J. In press, a. The use of radiocarbon dates in unraveling Mesolithic palimpsests: examples from the coversand area of NW Belgium. In: MESO 2010. The Eighth International Conference in the Mesolithic in Europe (Santander 13–17 September 2010). Oxford: Oxbow Books.Google Scholar
Crombé, P, Sergant, J, Lombaert, L, De Reu, J. In press, b. The use of radiocarbon dates in unraveling Mesolithic palimpsests: examples from the coversand area of NW Belgium. In: Souffi, B, Valentin, B, Ducrocq, T, Fagnart, J-P, Séara, F, Verjux, C, editors. Palethnographie du Mésolithique. Recherches sur les habitats de plain air dans la moitié septentrionale de la France et ses marges. Actes de la table ronde international, 26–27 Novembre 2010, Paris. Paris: Societé Préhistorique Francaise.Google Scholar
De Laet, SJ, Van Doorselaer, A, Desittere, M, Thoen, H. 1965. Verdere opgravingen in het urnenveld te Destelbergen (1965 en 1966). Oudheidkundige Opgravingen en Vondsten in Oostvlaanderen 4:1025.Google Scholar
De Laet, SJ, Thoen, H, Bourgeois, J. 1985. De opgravingen te Destelbergen/Eenbeekeinde in het raam van de vroegste geschiedenis van de stad Gent I. De voorgeschiedenis. Handelingen der Maatschappij voor Geschiedenis en Oudheidkunde te Gent, Nieuwe Reeks 39:335.Google Scholar
De Laet, SJ, Thoen, H, Bourgeois, J. 1986. Les fouilles du séminaire d'archéologie de la Rijksuniversiteit te Gent à Destelbergen-Eenbeekeinde (1960–1984) et l'histoire la plus ancienne de la région de Gent (Gand). I. La période préhistorique. Brugge: De Tempel. 225 p.Google Scholar
De Mulder, G. 2010. Old bones, new ideas. 14C-dating of cremated bones from Late Bronze Age and Early Iron Age urnfield cemeteries in Flanders. In: Sterry, M, Tullett, A, Ray, N, editors. In Search of the Iron Age. Proceedings of the Iron Age Research Student Seminar 2008, University of Leicester. School of Archaeology and Ancient History, University of Leicester, p 217–43.Google Scholar
De Mulder, G. 2011. Funeraire rituelen in het Scheldebekken tijdens de late bronstijd en de vroege ijzertijd. De grafvelden in hun maatschappelijke en sociale context [PhD dissertation]. Ghent: Ghent University. 542 p.Google Scholar
De Mulder, G, Van Strydonck, M, Boudin, M, Leclercq, W, Paridaens, N, Warmenbol, E. 2007. Re-evaluation of the Late Bronze and Early Iron Age chronology of the western Belgian urnfields based on 14C dating of cremated bones. Radiocarbon 49(2):499514.CrossRefGoogle Scholar
De Mulder, G, Van Strydonck, M, Boudin, M. 2009. The impact of cremated bone dating on the archaeological chronology of the Low Countries. Radiocarbon 51(2):579600.CrossRefGoogle Scholar
De Reu, J, Bats, M, Crombé, P, Antrop, M, Court-Picon, M, De Maeyer, P, De Smedt, P, Finke, P, Van Meirvenne, M, Verniers, J, Werbrouck, I, Zwertvaegher, A, Bourgeois, J. 2011a. Een GIS benadering van de bronstijdgrafheuvel in Zandig-Vlaanderen: enkele voorlopige resultaten (België). Lunula, Archaeologia Protohistorica 19:38.Google Scholar
De Reu, J, Deweirdt, E, Crombé, P, Bats, M, Antrop, M, De Maeyer, P, De Smedt, P, Finke, P, Van Meirvenne, M, Verniers, J, Zwertvaegher, A, Bourgeois, J. 2011b. Les tombelles de l'âge du bronze en Flandre sablonneuse (nord-ouest de la Belgique): un status quaestionis. Archäologisches Korrespondenzblatt 41(4):491505.Google Scholar
Ebdon, D. 1985. Statistics in Geography. 2nd edition. Maiden: Blackwell Publishing. 233 p.Google Scholar
Furfey, PH. 1927. A note on Lefever's “Standard Deviational Ellipse.” The American Journal of Sociology 33(1):94–8.CrossRefGoogle Scholar
Gong, J. 2002. Clarifying the standard deviational ellipse. Geographical Analysis 34(2):155–67.CrossRefGoogle Scholar
Jones, BG. 1980. Applications of centrographic techniques to the study of urban phenomena: Atlanta, Georgia 1940–1975. Economic Geography 56(3):201–22.CrossRefGoogle Scholar
Kent, J, Leitner, M. 2007. Efficacy of standard deviational ellipses in the application of criminal geographic profiling. Journal of Investigative Psychology and Offender Profiling 4(3):147–65.CrossRefGoogle Scholar
Khan, AA. 1986. Two simple methods of spatial analysis and their applications in location-oriented health services research. American Journal of Public Health 76(10):1207–10.CrossRefGoogle ScholarPubMed
Klausen, MB. 2004. Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. Journal of Volcanology and Geothermal Research 138(3–4):185204.CrossRefGoogle Scholar
Klausen, MB. 2006. Geometry and mode of emplacement of dike swarms around the Birnudalstindur igneous centre, SE Iceland. Journal of Volcanology and Geothermal Research 151(4):340–56.CrossRefGoogle Scholar
Lanting, JN, Brindley, AL. 1998. Dating cremated bone: the dawn of a new era. The Journal of Irish Archaeology 9:17.Google Scholar
Lanting, JN, van der Plicht, J. 2001/2002. De 14C-chronologie van de Nederlandse pre- en protohistorie, IV: bronstijd en vroege ijzertijd. Palaeohistoria 43/44:117262.Google Scholar
Lanting, JN, van der Plicht, J. 2005/2006. De 14C-chronologie van de Nederlandse pre- en protohistorie, V: midden- en late ijzertijd. Palaeohistoria 47/48:241427.Google Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249–54.CrossRefGoogle Scholar
LeBeau, JL. 1987. The methods and measures of centrography and the spatial dynamics of rape. Journal of Quantitative Criminology 3(2):125–41.CrossRefGoogle Scholar
Lefever, DW. 1926. Measuring geographic concentration by means of the standard deviational ellipse. The American Journal of Sociology 32(1):8894.CrossRefGoogle Scholar
Levine, N. 2006. Crime mapping and the Crimestat program. Geographical Analysis 38(1):4156.CrossRefGoogle Scholar
Levine, N. 2010. CrimeStat III: a spatial statistics program for the analysis of crime incident locations (version 3.3). Houston/Washington DC: Ned Levine & Associates & National Institute of Justice.Google Scholar
Mamuse, A, Porwal, A, Kreuzer, O, Beresford, S. 2009. A new method for spatial centrographic analysis of mineral deposit clusters. Ore Geology Reviews 36(4):293305.CrossRefGoogle Scholar
Michczyński, A. 2007. Is it possible to find a good point estimate of a calibrated radiocarbon date? Radiocarbon 49(2):393401.CrossRefGoogle Scholar
Myint, SW. 2008. An exploration of spatial dispersion, pattern, and association of socio-economic functional units in an urban system. Applied Geography 28(3):168–88.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Stephenson, LK. 1974. Spatial dispersion of intra-urban juvenile delinquency. Journal of Geography 73(3):20–6.CrossRefGoogle Scholar
Tanaka, T, Ryu, S, Nishigaki, M, Hashimoto, M. 1981. Methodological approaches on medical care planning from the viewpoint of geographical allocation model: A case study on South Tama district. Social Science & Medicine. Part D: Medical Geography 15(1):8391.Google Scholar
Telford, RJ, Heegaard, E, Birks, HJB. 2004. The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14(2):296–8.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula, Archaeologia Protohistorica 13:310.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2009. 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51(2):553–68.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010a. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2–3):578–86.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010b. Een status quaestionis van 14C-dateringen op gecremeerd bot. Lunula, Archaeologia Protohistorica 18:512.Google Scholar
Yuan, M. 2008. Adding time into geographic information system databases. In: Wilson, JP, Fotheringham, AS, editors. The Handbook of Geographic Information Science. Maiden: Blackwell Publishing, p 169–84.Google Scholar