Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T06:32:06.322Z Has data issue: false hasContentIssue false

Vegetation and climate changes during the late Pliocene and early Pleistocene in SW Anatolia, Turkey

Published online by Cambridge University Press:  20 January 2017

Gonzalo Jiménez-Moreno*
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granadan, Fuente Nueva s/, 18002 Granada, Spain
Hülya Alçiçek
Affiliation:
Pamukkale University, Dept. of Geology, 20070 Denizli, Turkey
M. Cihat Alçiçek
Affiliation:
Pamukkale University, Dept. of Geology, 20070 Denizli, Turkey
Lars van den Hoek Ostende
Affiliation:
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
Frank P. Wesselingh
Affiliation:
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
*
* Corresponding author at: Avda. Fuentenueva S/N, 18002, Granada, Spain.Email Address: [email protected], [email protected], [email protected], [email protected], [email protected]

Abstract

Pollen analysis was done on lacustrine sedimentary sequences dated by micromammals as late Pliocene–early Pleistocene that outcrop in two Neogene graben basins from SW Turkey. This study shows vegetation changes from steppe-like to more forested environments, very similar to the cyclic oscillations related to late Pleistocene glacial–interglacial climate changes. Artemisia was abundant during cold–arid periods, indicating that this species was already widespread in this area during the latest Pliocene and the beginning of the Pleistocene. A review of pollen records from Anatolia agrees with this study, suggesting that the spreading of this arid species occurred during a major climatic change: the beginning of the first glaciations and probably a change in seasonality towards summer aridity. Artemisia temporarily disappeared from the region during warm–wet periods and thus we suggest that glacial–interglacial-type oscillations already occurred in the area during the late Pliocene–early Pleistocene.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akdeniz, N. Geological maps of Turkey in 1:100.000 scale: Denizli N22 sheet. (2011). Mineral Research and Exploration Directorate of Turkey, Ankara. 44 ppGoogle Scholar
Akgün, F., and Akyol, E. Palynostratigraphy of the coal bearing Neogene deposits in Büyük Menderes Graben, Western Anatolia. Geobios 32, (1999). 367383.Google Scholar
Akgün, F., Kayseri, M.S., and Akkiraz, M.S. Palaeoclimatic evolution and vegetational changes during the Late Oligocene–Miocene period in the Western and Central Anatolia (Turkey). Palaeogeography Palaeoclimatology Palaeoecology 253, (2007). 56106.Google Scholar
Akkiraz, M.S., Akgün, F., Utescher, T., Bruch, A.A., and Mosbrugger, V. Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography Palaeoclimatology Palaeoecology 304, (2011). 276290.Google Scholar
Alçiçek, M.C. Sedimentological Investigation of Çameli Basin (late Miocene–late Pliocene, Denizli, SW Anatolia). (PhD Thesis) (2001). Ankara Univ, Ankara. (In Turkish.)Google Scholar
Alçiçek, M.C., and Ten Veen, J.H. The late Early Miocene Acipayam piggy-back basin: refining the last stages of Lycian nappe emplacement in SW Turkey. Sedim. Geol. 208, (2008). 101113.CrossRefGoogle Scholar
Alçiçek, H., and Jiménez-Moreno, G. Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology 291, (2013). 6283.Google Scholar
Alçiçek, M.C., Kazancı, N., and Özkul, M. Multiple rifting pulses and sedimentation in the Çameli Basin, southwestern Anatolia. Turkish Sedimentary Geology 173, (2005). 409431.Google Scholar
Alçiçek, M.C., Ten Veen, J.H., and Özkul, M. Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey. Robertson, A.H.F., and Mountrakis, D. Tectonic Development of the Eastern Mediterranean Region. Geological Society of London, Special Publication vol. 260, (2006). 591611.CrossRefGoogle Scholar
Anderson, R.S., Jiménez-Moreno, G., Carrión, J.S., and Pérez-Martínez, C. Holocene vegetation history from Laguna de Río Seco, Sierra Nevada, southern Spain. Quaternary Science Reviews 30, (2011). 16151629.Google Scholar
Bachiri Taoufiq, N., Barhoum, N., and Suc, J.-P. Les environnements continentaux du corridor rifain (Maroc) au Miocène supérieur d'après la palynologie. Geodiversitas 30, 1 (2008). 4158.Google Scholar
Becker-Platen, J.D. Lithostratigraphische Unterschungen im Kanozoikum Südwest Anatoliens (Türkei) — Kanozoikum und Braunkohlen der Turkei. Beiheft Geologische Jahrbuch 97, (1970). (Hannover, 244 pp.)Google Scholar
Becker-Platen, J.D., Benda, L., Sickenberg, O., and Tobien, H. Saugerfaunen und Neogen-Stratigraphie in Zentral- und West-Anatolien (Türkei). Memoires du B.R.G.M. (1974). 8188.Google Scholar
Becker-Platen, J.D., Benda, L., and Steffens, P. Litho- und biostratigraphische Deutung radiometrischer Altersbestimmingun aus dem Jungtertiar der Türkei. Geologische Jahrbuch B25, (1977). 139167.Google Scholar
Benda, L. Principles of the palynologic subdivision of the Turkish Neogene. Newsletters on Stratigraphy 1, (1971). 2326.CrossRefGoogle Scholar
Biltekin, D. Vegetation and climate of North Anatolian and North Aegean region since 7 Ma according to pollen analysis. Unpublished PhD Thesis, Istanbul Technical University and University Claude Bernard–Lyon 1, (2010). 136 pp.Google Scholar
Biltekin, D., Popescu, S.-M., Suc, J.-P., Quézel, P., Yavuz, N., Jiménez-Moreno, G., Safra, A., and Namik Cagatay, M. Anatolia: a plant refuge area during the last 23 Million years according to pollen records from Turkey. Review of Palaeobotany and Palynology 215, (2015). 122.CrossRefGoogle Scholar
Bozkurt, E. Origin of NE-trending basins in western Turkey. Geodinamica Acta 16, (2003). 6181.Google Scholar
Chepstow-Lusty, A., Bush, M.B., Frogley, M.R., Baker, P.A., Fritz, S.C., and Aronson, J. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quaternary Research 63, (2005). 9098.Google Scholar
Cohen, K.M., Finney, S.C., and Gibbard, P.L. International chronostratigraphic . International Commission on Stratigraphy. (2014). IUGS, (www.stratigraphy.org)Google Scholar
Collins, A.S., and Robertson, A.H.F. Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology 25, (1997). 255258.Google Scholar
Collins, A.S., and Robertson, A.H.F. Processes of Late Cretaceous to Late Miocene episodic thrust-sheet translations in the Lycian Taurides, SW Turkey. Journal of the Geological Society of London 155, (1998). 759772.Google Scholar
Cour, P., and Duzer, D. La signification climatique, édaphique et sédimentologique des rapports entre taxons en analyse palynologique. Annales des Mines de Belgique 7–8, (1978). 155164.Google Scholar
Diepeveen, F. The micromammals from Bıçakçı (Anatolia). Unpublished MSc Thesis, Leiden University, The Netherlands. (2012). 29 pp.Google Scholar
Erakman, B., Meşhur, M., Gül, M.A., Alkan, H., Öztaş, Y., and Akpınar, M. Toros projesine bağlı Kalkan-Köyceğiz-Çameli-Tefenni arasında kalan alanın jeolojisi ve hidrokarbon olanakları raporu. Natural Oil and Gas Company of Turkey (TPAO), Technical Report, no 1732, Ankara, Turkey. (1982). Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, New York. (340 pp.)Google Scholar
Favre, et al. A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Review of Palaeobotany and Palynology 148, (2008). 1335.Google Scholar
Fowell, S.J.B., Hansen, C.S., Peck, J.A., Khosbayar, P., and Ganbold, E. Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research 59, (2003). 353363.Google Scholar
Hordijk, K., and de Bruijn, H. The succession of rodent faunas from the Mio/Pliocene lacustrine deposits of the Florina–Ptolemais–Servia Basin (Greece). Hellenic Journal of Geosciences 44, (2009). 21103.Google Scholar
Jiménez-Moreno, G., and Anderson, R.S. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quaternary Research 77, (2012). 4453.Google Scholar
Jiménez-Moreno, G., and Suc, J.-P. Middle Miocene latitudinal climatic gradient in western Europe: evidence from pollen records. Palaeogeography Palaeoclimatology Palaeoecology 253, (2007). 224241.CrossRefGoogle Scholar
Jiménez-Moreno, G., Rodríguez-Tovar, F.-J., Pardo-Igúzquiza, E., Fauquette, S., Suc, J.-P., and Müller, P. High-resolution palynological analysis in late early–middle Miocene core from the Pannonian Basin, Hungary: climatic changes, astronomical forcing and eustatic fluctuations in the Central Paratethys. Palaeogeography Palaeoclimatology Palaeoecology 216, (2005). 7397.Google Scholar
Jiménez-Moreno, G., Abdul-Aziz, H., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E., and Suc, J.-P. Palynological evidence for astronomical forcing in Early–Middle Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeography Palaeoclimatology Palaeoecology 252, (2007). 601616.Google Scholar
Jiménez-Moreno, G., Popescu, S.-M., Ivanov, D., and Suc, J.-P. Neogene flora, vegetation and climate dynamics in Central Eastern Europe according to pollen records. Williams, M., Haywood, A., Gregory, J., and Schmidt, D.N. Deep-Time Perspectives on Climate Change. Marrying the Signal from Computer Models and Biological Proxies. The Micropaleontological Society, The Geological Society, London Special Publications (2007). 393406.Google Scholar
Jiménez-Moreno, G., Suc, J.-P., and Fauquette, S. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Palaeobotany and Palynology 162, (2010). 403415.Google Scholar
Jiménez-Moreno, G., Anderson, R.S., Atudorei, V., and Toney, J.L. A high-resolution record of vegetation, climate, and fire regimes in the mixed conifer forest of northern Colorado (USA). Geological Society of America Bulletin 123, (2011). 240254.Google Scholar
Jiménez-Moreno, G., Burjachs, F., Expósito, I., Oms, O., Carrancho, A., Villalain, J.J., van der Made, J., Agustí, J., Campeny, G., and Gómez de Soler, B. Late Pliocene vegetation and orbital-scale climate changes from the western Mediterranean area. Global and Planetary Change 108, (2013). 1528.CrossRefGoogle Scholar
Joannin, S., Cornée, J.J., Münch, P., Fornari, M., Vaisiliev, I., Krijgsman, W., Nahapetyan, S., Gabrielyan, I., Ollivier, V., Roiron, P., and Chataigner, C. Early Pleistocene climate cycles in continental deposits of the Lesser Caucasus of Armenia inferred from palynology, magnetostratigraphy, and 40Ar/39Ar dating. Earth and Planetary Science Letters 291, (2010). 149158.Google Scholar
Kayseri-Özer, M.S. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta 26, (2014). 122157.CrossRefGoogle Scholar
Konak, N. Geological map of Turkey in 1/500.000 scale: İzmir sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey. (2002). Google Scholar
Konak, N., and Şenel, M. Geological map of Turkey in 1/500.000 scale: Denizli sheet. Publication of Mineral Research and Explaniton Directorate of Turkey (2002). Google Scholar
Leroy, S.A.G. Progress in palynology of the Gelasian–Calabrian Stages in Europe: ten messages. Revue de Micropaleontologie 50, (2007). 293308.Google Scholar
Lisiecki, L.E., and Raymo, M.E. A Pliocene–Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, (2005). PA1003Google Scholar
Meşhur, M., and Akpınar, M. Yatağan-Milas-Bodrum-Karacasu-Kale-Acıpayam-Tavas civarlarının jeolojisi ve petrol olanakları. Natural Oil and Gas Company of Turkey (TPAO), Technical report, no 1963, Ankara, Turkey. (1984). Google Scholar
Okay, A.İ. Denizli'nin güneyinde Menderes masifi ve Likya naplarının jeolojisi. Bulletin of the Mineral Research and Exploration Directorate of Turkey (MTA) 109, (1989). 4558.Google Scholar
Pamir, H.N., and Erentöz, C. Geological maps of Turkey in 1:500.000 scale: Denizli sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey. (1974). Google Scholar
Popescu, S.-M. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380ª (Leg 42B). Palaeogeography Palaeoclimatology Palaeoecology 238, (2006). 6477.Google Scholar
Popescu, S.-.M., Biltekin, D., Winter, H., Suc, J.-.P., Melinte-Dobrinescu, M.C., Klotz, S., Rabineau, M., Combourieu-Nebout, N., Clauzon, G., and Deaconu, F. Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: long pollen records and climatostratigraphy. Quaternary International 1–2, (2010). 152167.Google Scholar
Prat, N., and Daroca, M.V. Eutrophication processes in Spanish reservoirs as revealed by biological records in profundal sediments. Hydrobiologia 103, (1983). 153158.Google Scholar
Prentice, I.C., Guiot, J., and Harrison, S.P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, (1992). 658660.Google Scholar
Quézel, P., and Médail, F. Ecologie et biogéographie des forêts du bassin méditerranéen. (2003). Elsevier, France. (571 pp.)Google Scholar
Saraç, G. Türkiye Omurgalı Fosil Yatakları. Scientific Report No. 10609. (2003). General Directorate of the Mineral Research and Exploration of Turkey (MTA), Ankara. 208 ppGoogle Scholar
Sefidi, K., Mohadjer, M.R.M., Etemad, V., and Copenheaver, C.A. Stand characteristics and distribution of a relict population of Persian ironwood (Parrotia persica C.A. Meyer) in northern Iran. Flora 206, (2011). 418422.Google Scholar
Şenel, M. (1997a). ) Geological maps of Turkey in 1:100000 scale: Fethiye L8 sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey. 22 pp.Google Scholar
Şenel, M. (1997b). ) Geological maps of Turkey in 1:100000 scale: Fethiye M8 sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey. 15 pp.Google Scholar
Şenel, M. (1997c). ) Geological maps of Turkey in 1:100000 scale: Denizli K9 sheet. Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey. 17 ppGoogle Scholar
Şenel, M. (2002). Geological Map of Turkey in 1/500.000 scale: Konya sheet. Publication of Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey.Google Scholar
Smittenberg, R.H., Baas, M., Schouten, S., and Sinninghe Damsté, J.S. The demise of the algae Botryococcus braunii from a Norwegian fjord was due to early eutrophication. The Holocene 15, (2005). 133140.Google Scholar
Suc, J.-P. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, (1984). 429432.Google Scholar
Suc, J.-P., and Popescu, S.-M. Pollen records and climatic cycles in the North Mediterranean region since 2.7 Ma. Geological Society of London, Special Publication 247, (2005). 147158.Google Scholar
Suc, J.-P., Combourieu-Nebout, N., Seret, G., Popescu, S.M., Klotz, S., Gautier, F., Clauzon, G., Westgate, J., Insinga, D., and Sandhu, A.S. The Crotone series: a synthesis and new data. Quaternary International 219, (2010). 121133.Google Scholar
Sun, S. (1990). Denizli-Uşak Arasının Jeolojisi ve Linyit Olanakları. Mineral Research and Exploration Directorate of Turkey (MTA), Scientific Report No: 9985, pp. 92 Ankara, Turkey. (in Turkish, unpublished).Google Scholar
Traverse, A. Response of world vegetation to Neogene tectonic and climatic events. Alcheringa 6, (1982). 197209.CrossRefGoogle Scholar
Turan, N. (2002). Geological map of Turkey in 1/500.000 scale: Ankara sheet. Publication of Mineral Research and Exploration Directorate of Turkey (MTA), Ankara, Turkey.Google Scholar
Van Bennekom, L. (2013). The micromammals from Ericek (Anatolia, Turkey). Unpublished MSc Thesis, Leiden University, The Netherlands. 24 pp.Google Scholar
Van den Hoek Ostende, L.W., van Bennekom, L., Alçiçek, M.C., Murray, A.M., Gardner, J.D., Wesselingh, F.P., Alçiçek, H., and Tesakov, A.S. Ericek, a new Pliocene vertebrate locality from the Çameli Basin (southwestern Anatolia, Turkey). Palaeobiodiversity and Palaeoenvironments 95, (2015). 305320.Google Scholar
Van den Hoek Ostende, L.W., Diepenveen, F., Tesakov, A., Saraç, G., Mayhew, D., and Alçiçek, M.C. On the brink: micromammals from the latest Villanyian from Bıçakçı (Anatolia). Geological Journal 50, (2015). 230245.Google Scholar
Wang, C.W. The forests of China with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation. vol. 5, (1961). Harvard University, Cambridge, Massachusetts. (313 pp.)Google Scholar
Yavuz-Işık, N., and Toprak, V. Palynostratigraphy and vegetation characteristics of Neogene continental deposits interbedded with the Cappodocia ignimbrites (Central Anatolia, Turkey). International Journal of Earth Sciences 99, (2010). 18871897.Google Scholar
Yunfa, M., Qingquan, M., Xiaomin, F., Xiaoli, Y., Fuli, W., and Chunhui, S. Origin and development of Artemisia (Asteraceae) in Asia and its implications for the uplift history of the Tibetan Plateau: a review. Quaternary International 236, (2011). 312.Google Scholar