Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-03T19:06:06.522Z Has data issue: false hasContentIssue false

Varves and mass-movement deposits record distinctly different sedimentation dynamics since the late glacial (Lake Szurpiły, northeastern Poland)

Published online by Cambridge University Press:  08 November 2019

Małgorzata Kinder*
Affiliation:
Environmental Change Reconstruction Laboratory, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland
Wojciech Tylmann
Affiliation:
Environmental Change Reconstruction Laboratory, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland
Michał Rzeszewski
Affiliation:
Department of Human Spatial Behaviour, Adam Mickiewicz University, Faculty of Geographical and Geological Sciences, Krygowskiego 10, 61-680, Poznań, Poland
Bernd Zolitschka
Affiliation:
Institute of Geography, Geomorphology and Polar Research (GEOPOLAR), University of Bremen, Celsiusstrasse 2, 28359 Bremen, Germany
*
*Corresponding author at: Environmental Change Reconstruction Laboratory, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, Poland. E-mail address: [email protected] (M. Kinder).

Abstract

The sedimentological and geochemical characteristics of sediments from Lake Szurpiły (northeastern Poland) can be used as a record of mass movement and climate dynamics since the Allerød. Late-glacial sediments suggest enhanced runoff conditions in the catchment after the retreat of the Scandinavian Ice Sheet, while Holocene varved sediments are interrupted by mass-movement deposits (MMDs). We identified 85 thin (<10 cm) MMDs (type 1) that consist of autochthonous material and frequently occur during the Atlantic period. Mobilization of littoral zone and slope sediments caused redeposition in the deepest part of the lake and was likely related to climatic conditions. In contrasting, one sedimentary unit (>1-m-thick MMD type 2) consists of auto- and allochthonous material and represents multistage processes, including erosion and deformation of underlying varved sediments, rapid deposition of clastic material, and redeposition of previously eroded varved sediments. Seismic activity or permafrost degradation was responsible for the deposition of MMD type 2. Furthermore, varve-thickness variability suggests Gleissberg and Suess solar cycles before 850 BC, when human impact was limited. Additionally, 22 and 11 yr sunspot cycles are recognized in light/dark laminae-thickness ratios and reflect influences of solar irradiance on lacustrine productivity.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, Y.C., McCave, I.N., Riley, J.B., 1991. Laser diffraction size analysis. In: Syvitski, J. (Ed.), Principles, Methods, and Application of Particle Size Analysis. Cambridge University Press, Cambridge, pp. 119128.Google Scholar
Amann, B., Szidat, S., Grosjean, M., 2015. A millennial-long record of warm season precipitation and flood frequency for the north-western Alps inferred from varved lake sediments: implications for the future. Quaternary Science Reviews 115, 89100.Google Scholar
Bellwald, B., Hjelstuen, B. O., Sejrup, H. P., Haflidason, H., 2016. Postglacial mass movements and depositional environments in a high-latitude fjord system–Hardangerfjorden, Western Norway. Marine Geology 379, 157175.10.1016/j.margeo.2016.06.002Google Scholar
Benito, G., Johnstone, E., Lewin, J., Michczyńska, D.J., Soja, R., Starkel, L., Thorndycraft, V.R., 2006. Past hydrological events reflected in the Holocene fluvial record of Europe. CATENA 66, 145154.Google Scholar
Ber, A., 2000. Plejstocen Polski północno-wschodniej w nawiązaniu do głębszego podłoża i obszarów sąsiednich. PIG, Warsaw.Google Scholar
Blass, A., Anselmetti, F. S., Grosjean, M., Sturm, M., 2005. The last 1300 years of environmental history recorded in the sediments of Lake Sils (Engadine, Switzerland). Eclogae Geologicae Helvetiae, 98, 319332.Google Scholar
Bonk, A., Kinder, M., Enters, D., Grosjean, M., Meyer-Jacob, C., Tylmann, W., 2016. Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium. Journal of Paleolimnology 56, 239252.Google Scholar
Bradbury, P., Cumming, B., Laird, K., 2002. A 1500-year record of climatic and environmental change in Elk Lake, Minnesota III: measures of past primary productivity. Journal of Paleolimnology 27, 321340.Google Scholar
Brauer, A., Mangili, C., Moscariello, A., Witt, A., 2008. Palaeoclimatic implications from micro-facies data of a 5900 varve time series from the Piànico interglacial sediment record, southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 121135.Google Scholar
Büntgen, U., Kyncl, T., Ginzler, C., Jacks, D.S., Esper, J., Tegel, W., Heussner, K.-U., Kyncl, J., 2013. Filling the Eastern European gap in millennium-long temperature reconstructions. Proceedings of the National Academy of Sciences USA 110, 17731778.Google Scholar
Butz, C., Grosjean, M., Goslar, T., Tylmann, W., 2017. Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland. Journal of Paleolimnology 58, 5772.Google Scholar
Cohen, A.S., 2003. Paleolimnology. Oxford University Press, New York.Google Scholar
Cymerman, Z., 2014. Analiza strukturalno-kinematyczna i mezoproterozoiczna ewolucja tektoniczna masywu suwalskiego i jego otoczenia (NE Polska). Prace Państwowego Instytutu Geologicznego 201, 1173.Google Scholar
Czymzik, M., Dreibrodt, S., Feeser, I., Adolphi, F., Brauer, A., 2016. Mid-Holocene humid periods reconstructed from calcite varves of the Lake Woserin sediment record (north-eastern Germany). The Holocene 26, 935946.Google Scholar
Czymzik, M., Haltia, E., Saarni, S., Saarinen, T., Brauer, A., 2018. Differential North Atlantic control of winter hydroclimate in late Holocene varved sediments of Lake Kortejärvi, eastern Finland. Boreas 47, 926937.Google Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., Allen, J., Almqvist-Jacobson, H., Ammann, B., et al. , 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.Google Scholar
de Geer, G., 1912. Geochronologie der letzten 12000 Jahre. Geologische Rundschau 3, 457471.Google Scholar
Dobrowolski, R., Mazurek, M., Osadowski, Z., Alexandrowicz, W.P., Pidek, I.A., Pazdur, A., Piotrowska, N., Drzymulska, D., Urban, D., 2019. Holocene environmental changes in northern Poland recorded in alkaline spring-fed fen deposits—a multi-proxy approach. Quaternary Science Reviews 219, 236262.Google Scholar
Dreibrodt, S., Wiethold, J., 2015. Lake Belau and its catchment (northern Germany): a key archive of environmental history in northern central Europe since the onset of agriculture. The Holocene 25, 296322.Google Scholar
Drohmann, D., Negendank, J.F.W., 1993. Turbidites in the sediments of lake Meerfelder Maar (Germany) and the explanation of suspension sediments. Paleolimnology of European Maar Lakes 49, 193208.Google Scholar
Dzierżek, J., Zreda, M., 2007. Timing and style of deglaciation of northeastern Poland from cosmogenic 36Cl dating of glacial and glaciofluvial deposits. Geological Quarterly 51, 203216.Google Scholar
Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K.M., Pedersen, M.F., 2019. Arctic kelp forests: diversity, resilience and future. Global and Planetary Change 172, 114.Google Scholar
Gałka, M., Tobolski, K., Bubak, I., 2015. Late Glacial and Early Holocene lake level fluctuations in NE Poland tracked by macro-fossil, pollen and diatom records. Quaternary International 388, 2338.Google Scholar
Gałka, M., Tobolski, K., Zawisza, E., Goslar, T., 2014. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Vegetation History and Archaeobotany 23, 123152.Google Scholar
Gawęda, A., Wiszniewska, J., 2005. Poligeniczna mineralizacja żyłowa w skałach krystalicznych suwalskiego masywu anortozytowego (NE Polska). Przegląd Geologiczny 53, 327332.Google Scholar
Glaser, R., Riemann, D., Schönbein, J., Barriendos, M., Brázdil, R., Bertolin, C., Camuffo, D., et al. , 2010. The variability of European floods since AD 1500. Climatic Change 101, 235256.Google Scholar
Glur, L., Stalder, N.F., Wirth, S.B., Gilli, A., Anselmetti, F.S., 2015. Alpine lacustrine varved record reveals summer temperature as main control of glacier fluctuations over the past 2250 years. The Holocene 25, 280287.Google Scholar
Glur, L., Wirth, S.B., Büntgen, U., Gilli, A., Haug, G.H., Schär, C., Beer, J., Anselmetti, F.S., 2013. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Scientific Reports 3, 2770.Google Scholar
Górniak, A., 2000. Klimat województwa podlaskiego. IMGW, Białystok.Google Scholar
Górniak, A., Reszczyński, K., Siwak, P., Świerubska, T., 2007. Suwalski Park Krajobrazowy. In: Fałtynowicz, W. (Ed.), Kraina Hańczy. Stowarzyszenie Miłośników SPK, Turtul, pp. 6773.Google Scholar
Gregersen, S., 2002. Earthquakes and change of stress since the ice age in Scandinavia. Bulletin of the Geological Society of Denmark 49, 7378.Google Scholar
Gregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B., Guterch, B., Mäntyniemi, P., et al. , 2007. The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors 164, 6374.Google Scholar
Guterch, B., 2009. Sejsmiczność Polski w świetle danych historycznych. Przegląd Geofizyczny 57, 513520.Google Scholar
Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P., Mélières, M. A., 2007. High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the western French Alps (Lake Bramant, Grandes Rousses Massif). Quaternary Science Reviews 26, 26442660.Google Scholar
Haas, M., Baumann, F., Castella, D., Haghipour, N., Reusch, A., Strasser, M., Eglinton, T.I., Dubois, N., 2019. Roman-driven cultural eutrophication of Lake Murten, Switzerland. Earth and Planetary Science Letters 505, 110117.Google Scholar
Haltia-Hovi, E., Saarinen, T., Kukkonen, M., 2007. A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quaternary Science Reviews 26, 678689.Google Scholar
Hammer, Ø., Harper, D.A.T., 2006. Paleontological Data Analysis. Blackwell, Oxford.Google Scholar
Hammer, Ø., Harper, D.A.T., Paul Ryan, D.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 57.Google Scholar
Hernández-Almeida, I., Grosjean, M., Przybylak, R., Tylmann, W., 2015. A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability. Quaternary Science Reviews 122, 7488.Google Scholar
Honczaruk, M., Śliwiński, Ł., 2011. Wyniki badań hydrogeologicznych w strefie występowania głębokiej wieloletniej zmarzliny w otworze wiertniczym Udryń Pig 1. Biuletyn Państwowego Instytutu Geologicznego 445, 203216.Google Scholar
Jibson, R.W., 1996. Use of landslides for paleoseismic analysis. Engineering Geology 43, 291323.Google Scholar
Juschus, O., Melles, M., Gebhardt, A.C., Niessen, F., 2009. Late Quaternary mass movement events in Lake El'gygytgyn, North-eastern Siberia. Sedimentology 56, 21552174.Google Scholar
Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D.R.N., Moskalenko, N., Brown, J., Walker, D.A., Raynolds, M.K., Buchhorn, M., 2017. Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in northern Alaska. Geomorphology 297, 2042.Google Scholar
Karlsson, J.M., Lyon, S.W., Destouni, G., 2012. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. Journal of Hydrology 464–465, 459466.Google Scholar
Kinder, M., Tylmann, W., Enters, D., Piotrowska, N., Poreba, G., Zolitschka, B., 2013. Construction and validation of calendar-year time scale for annually laminated sediments—an example from Lake Szurpiły (NE Poland). GFF 135, 248257.Google Scholar
Kinder, M., Tylmann, W., Bubak, I., Fiłoc, M., Gąsiorowski, M., Kupryjanowicz, M., Mayr, C., Sauer, L., Voellering, U., Zolitschka, B., 2019. Holocene history of human impacts inferred from annually laminated sediments in Lake Szurpiły, northeast Poland. Journal of Paleolimnology 61, 419435.Google Scholar
Kupryjanowicz, M., 2007. Postglacial development of vegetation in the vicinity of the Wigry Lake. Geochronometria 271, 5366.Google Scholar
Labat, D., 2005. Recent advances in wavelet analyses: Part 1. A review of concepts. Journal of Hydrology 314, 275288.Google Scholar
Larsson, L.-A., 2003. Cybis CooRecorder. Version 2.3.13 [computer software]. www.cybis.seGoogle Scholar
Livingstone, D.M., Hajdas, I., 2001. Climatically relevant periodicities in the thickness of biogenic carbonate varves in Spooensee, Switzerland (9740–6870 calendar yr BP). Journal of Paleolimnology 25, 1724.Google Scholar
Lorenc, H., 2005. Atlas klimatu Polski. IMGW, Warsaw.Google Scholar
Lotter, A.F., Sturm, M., Teranes, J.L., Wehrli, B., 1997. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquatic Sciences 59, 304325.Google Scholar
Luoto, T.P., 2013. How cold was the Little Ice Age? A proxy-based reconstruction from Finland applying modern analogues of fossil midge assemblages. Environmental Earth Sciences 68, 13211329.Google Scholar
Lüder, B., Kirchner, G., Lücke, A., Zolitschka, B., 2006. Palaeoenvironmental reconstructions based on geochemical parameters from annually laminated sediments of Sacrower See (northeastern Germany) since the 17th century. Journal of Paleolimnology 35, 897912.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.E., Donner, J.J., 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109126.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.Google Scholar
Moernaut, J., Van Daele, M., Heirman, K., Fontijn, K., Strasser, M., Pino, M., Urrutia, R., De Batist, M., 2014. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. Journal of Geophysical Research: Solid Earth 119, 16071633.Google Scholar
Moernaut, J., Van Daele, M., Strasser, M., Clare, M. A., Heirman, K., Viel, M., Cardenas, J., et al. , 2017. Lacustrine turbidites produced by surficial slope sediment remobilization: a mechanism for continuous and sensitive turbidite paleoseismic records. Marine Geology 384, 159176.Google Scholar
Mojski, J.E., 2005. Ziemie polskie w czwartorzędzie: zarys morfogenezy. PIG, Warsaw.Google Scholar
Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: a Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae 99, 343362.Google Scholar
Mörner, N.-A., 2011. Paleoseismology: the application of multiple parameters in four case studies in Sweden. Quaternary International 242, 6575.Google Scholar
Murtagh, F., Legendre, P., 2014. Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification 31, 274295.Google Scholar
Ojala, A.E.K., Alenius, T., 2005. 10 000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 285302.Google Scholar
Ojala, A.E.K., Francus, P., Zolitschka, B., Besonen, M., Lamoureux, S.F., 2012. Characteristics of sedimentary varve chronologies—a review. Quaternary Science Reviews 43, 4560.Google Scholar
Ojala, A.E.K., Mattila, J., Markovaara-Koivisto, M., Ruskeeniemi, T., Palmu, J.-P., Sutinen, R., 2019. Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology 326, 190201.Google Scholar
Ojala, A.E.K., Mattila, J., Virtasalo, J., Kuva, J., Luoto, T.P., 2018. Seismic deformation of varved sediments in southern Fennoscandia at 7400cal BP. Tectonophysics 744, 5871.Google Scholar
Ojala, A.E.K., Saarinen, T., Salonen, V.P., 2000. Preconditions for the formation of annually laminated lake sediments in southern and central Finland. Boreal Environment Research 5, 243255.Google Scholar
Osleger, D.A., Heyvaert, A.C., Stoner, J.S., Verosub, K.L., 2009. Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada. Journal of Paleolimnology 42, 103122.Google Scholar
Pánek, T., 2019. Landslides and Quaternary climate changes—the state of the art. Earth Science Reviews 196, 102871.Google Scholar
Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer, New York.Google Scholar
Peristykh, A.N., Damon, P.E., 2003. Persistence of the Gleissberg 88-year solar cycle over the last ~12,000 years: evidence from cosmogenic isotopes. Journal of Geophysical Research: Space Physics 108, 1003.Google Scholar
Pochocka-Szwarc, K., 2010. Zapis glacilimnicznej sedymentacji w basenie Niecki Skaliskiej–północna część Pojezierza Mazurskiego. Przegląd Geologiczny 58, 10141022.Google Scholar
Praet, N., Moernaut, J., Van Daele, M., Boes, E., Haeussler, P.J., Strupler, M., Schmidt, S., et al. , 2017. Paleoseismic potential of sublacustrine landslide records in a high-seismicity setting (south-central Alaska). Marine Geology 384, 103119.Google Scholar
Ralska-Jasiewiczowa, M., Goslar, T., Madeyska, T., Starkel, L. (Eds.), 1998. Lake Gościąż, Central Poland: A Monographic Study. Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.Google Scholar
Ryka, W., 1998. Views on the origin of the Suwałki Anorthosite Massif. Prace Państwowego Instytutu Geologicznego 161, 1826.Google Scholar
Šafanda, J., Szewczyk, J., Majorowicz, J., 2004. Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet. Geophysical Research Letters 31, L07211.Google Scholar
Saulnier-Talbot, É., 2016. Paleolimnology as a tool to achieve environmental sustainability in the Anthropocene: an overview. Geosciences 6, 26.Google Scholar
Schnellmann, M., Anselmetti, F.S., Giardini, D., McKenzie, J.A., Ward, S.N. 2002. Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30, 11311134.Google Scholar
Séjourné, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J., Massé, M., Mège, D., 2015. Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology 241, 3140.Google Scholar
Shanmugam, G., 2017. Global case studies of soft-sediment deformation structures (SSDS): definitions, classifications, advances, origins, and problems. Journal of Palaeogeography 6, 251320.Google Scholar
Shanmugam, G., 2018. Slides, slumps, debris flows, turbidity currents, and bottom currents: implications. Earth Systems and Environmental Sciences, Elsevier Online Module. https://doi.org/10.1016/B978-0-12-409548-9.04380-3.Google Scholar
Słowiński, M., Zawiska, I., Ott, F., Noryśkiewicz, A. M., Plessen, B., Apolinarska, K., Rzodkiewicz, M., et al. , 2017. Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quaternary Science Reviews 158, 94106.Google Scholar
Smolska, E., 1996. Funkcjonowanie systemu korytowego w obszarze młodoglacjalnym na przykładzie górnej Szeszupy (Pojezierze Suwalskie). Wydział Geografii i Studiów Regionalnych Uniwersytetu Warszawskiego, Warsaw.Google Scholar
St-Onge, G., Chapron, E., Mulsow, S., Salas, M., Viel, M., Debret, M., Foucher, A., et al. , 2012. Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: implications for paleoseismicity and sedimentology. Sedimentary Geology 243, 89107.Google Scholar
Sturm, M., Matter, A., 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In: Matter, A., Tucker, M.E. (Eds.), Modern and Ancient Lake Sediments. Special Publications of the International Association of Sedimentologists, Blackwell, Oxford, pp. 147168.Google Scholar
Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B., Brauer, A., 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews 80, 7890.Google Scholar
Szewczyk, J., Gientka, D., 2009. Terrestrial heat flow density in Poland—a new approach. Geological Quarterly 53, 125140.Google Scholar
Usoskin, I.G., Gallet, Y., Lopes, F., Kovaltsov, G.A., Hulot, G., 2016. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astronomy & Astrophysics 587, A150.Google Scholar
Van Daele, M., Moernaut, J., Doom, L., Boes, E., Fontijn, K., Heirman, K., Vandoorne, W., et al. , 2015. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 14661496.Google Scholar
Van der Bilt, W.G.M., Bakke, J., Vasskog, K., D'Andrea, W.J., Bradley, R.S., Ólafsdóttir, S., 2015. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quaternary Science Reviews 126, 201218.Google Scholar
Van Loon, A.T., Pisarska-Jamroży, M., 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacio-isostatic rebound. Sedimentary Geology, 300, 110.Google Scholar
Vos, H., Brüchman, C., Lücke, A., Negendank, J.F.W., Schleser, G.H., Zolitschka, B., 2004. Phase stability of the solar Schwabe cycle in Lake Holzmaar, Germany, and GISP2, Greenland, between 10,000 and 9,000 cal. BP. In: Fischer, H., Kumke, T., Lohmann, G., Flöser, G., Miller, H., von Storch, H., Negendank, J.F.W. (Eds.), The Climate in Historical Times. Springer, Berlin, pp. 293317.Google Scholar
Vos, H., Sanchez, A., Zolitschka, B., Brauer, A., Negendank, J.F.W., 1997. Solar activity variations recorded in varved sediments from the crater Lake of Holzmaar—a maar lake in the Westeifel volcanic field, Germany. Surveys in Geophysics 18, 163182.Google Scholar
Weckwerth, P., Wysota, W., Piotrowski, J. A., Adamczyk, A., Krawiec, A., Dąbrowski, M., 2019. Late Weichselian glacier outburst floods in north-eastern Poland: landform evidence and palaeohydraulic significance. Earth-Science Reviews 194, 216233.Google Scholar
Wilhelm, B., Sabatier, P., Arnaud, F., 2015. Is a regional flood signal reproducible from lake sediments? Sedimentology 62, 11031117.Google Scholar
Wilhelm, B., Nomade, J., Crouzet, C., Litty, C., Sabatier, P., Belle, S., Rolland, Y., et al. , 2016. Quantified sensitivity of small lake sediments to record historic earthquakes: implications for paleoseismology. Journal of Geophysical Research: Earth Surface 121, 216.Google Scholar
Zolitschka, B., Francus, P., Ojala, A.E.K., Schimmelmann, A., 2015. Varves in lake sediments—a review. Quaternary Science Reviews 117, 141.Google Scholar