Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:02:05.380Z Has data issue: false hasContentIssue false

The value of non-pollen palynomorphs in interpreting paleoecological change in the Great Basin (Nevada, USA)

Published online by Cambridge University Press:  20 March 2017

Irene Tunno*
Affiliation:
Department of Geography, University of Nevada, Reno, Nevada 89557, USA
Scott A. Mensing
Affiliation:
Department of Geography, University of Nevada, Reno, Nevada 89557, USA
*
*Corresponding author at: Department of Geography, 1664 N. Virginia, Reno, Nevada 89557, USA. E-mail address: [email protected] (I. Tunno)

Abstract

Non-pollen palynomorphs (NPPs) are identifiable microfossils that survive chemical digestion during pollen extraction and appear in pollen slides. They represent important proxies and indicators of environmental change that can be integrated with pollen studies of landscape history. NPPs have been widely studied in Europe since the 1970s and regularly included in paleoecological studies, whereas in the United States only the most common NPPs have been routinely tallied. The aim of this study is to contribute to the validation of the use of NPPs in the reconstruction of landscape history. We analyzed NPPs in modern and fossil sediment samples from Stonehouse Meadow, located in Spring Valley in the eastern part of central Nevada. We present a total of 64 modern and fossil NPPs, with images and morphological descriptions given for all previously unknown NPPs and a selection of the most important known NPPs. The comparison of pollen and NPPs in the fossil sediments improves our interpretation of the ecological changes of the last 8000 yr.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R.S., Ejarque, A., Brown, P.M., Hallett, D.J., 2013. Holocene and historical vegetation change and fire history on the north-central coast of California, USA. Holocene 23, 17971810.CrossRefGoogle Scholar
Anderson, R.S., Ejarque, A., Rice, J., Smith, S.J., Lebow, C.G., 2015. Historic and Holocene environmental change in the San Antonio Creek Basin, mid-coastal California. Quaternary Research 83, 273286.CrossRefGoogle Scholar
Baker, A.B., Bhagwat, S.A., Willis, K., 2013. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quaternary Science Reviews 62, 2131.CrossRefGoogle Scholar
Benson, L., Klieforth, H., 1989. Stable isotopes in precipitation and ground water in the Yucca Mountain region, southern Nevada: paleoclimatic implications. In: Peterson, D.H. (Ed.), Aspects of Climate Variability in the Pacific and the Western Americas. Geophysical Monograph 55. American Geophysical Union, Washington, DC, pp. 4159.Google Scholar
Birks, H.J.B., Gordon, A.D., 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
Brinkkemper, O., van Haaster, H., 2012. Eggs of intestinal parasites whipworm (Trichuris) and mawworm (Ascaris): non-pollen palynomorphs in archaeological samples. Review of Palaeobotany and Palynology 186, 1621.CrossRefGoogle Scholar
Charlet, D., 1996. Atlas of Nevada Conifers. University of Nevada Press, Reno.Google Scholar
Chmura, G.L., Stone, P.A., Ross, M.S., 2006. Non-pollen microfossils in Everglades sediments. Review of Palaeobotany and Palynology 141, 103119.CrossRefGoogle Scholar
Cronquist, A., Holmgren, A.H., Holmgren, N.H., Reveal, J.L., Holmgren, P.K., 1984. Intermountain Flora: Vascular Plants of the Intermountain West, U.S.A. Vol. 4. The New York Botanical Garden, New York, pp. 545548.Google Scholar
Cugny, C., Mazier, F., Galop, D., 2010. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Vegetation History and Archaeobotany 19, 391408.CrossRefGoogle Scholar
Davis, O.K., 1987. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quaternary Research 28, 290294.CrossRefGoogle Scholar
Davis, O.K., Shafer, D.S., 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 4050.CrossRefGoogle Scholar
Doveri, F., 2004. Funghi fimicoli italici. Associazione Micologica Bresadola, Trento, Italy.Google Scholar
Ejarque, A., Anderson, R.S., Simms, A.R., Gentry, B.J., 2015. Prehistoric fires and the shaping of colonial transported landscapes in Southern California: a paleoenvironmental study at Dune Pond, Santa Barbara County. Quaternary Science Reviews 112, 181196.CrossRefGoogle Scholar
Ellis, M.B., 1971. Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, UK.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, New York.Google Scholar
Gelorini, V., Verbeken, A., van Geel, B., Cocquyt, C., Verschuren, D., 2011. Modern non-pollen palynomorphs from East African lake sediments. Review of Palaeobotany and Palynology 164, 143173.CrossRefGoogle Scholar
Graf, M.T., Chmura, G.L., 2006. Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Review of Palaeobotany and Palynology 141, 139149.CrossRefGoogle Scholar
Haas, J.N., 1996. Neorhabdocoela oocytes – palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Review of Palaeobotany and Palynology 91, 371382.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hickman, J.C. (Ed.), 1993. The Jepson Manual: Higher Plants of California. University of California Press, Berkeley, pp. 10841085.Google Scholar
Hoogenraad, H.R., 1935. Studien über die sphagnicolen Rhizopoden der niederländischen Fauna. Archiv für Protistenkunde 84, 1100.Google Scholar
Juggins, S., 2007. C2 Software for Ecological and Palaeoecological Data Analysis and Visualization. Newcastle University, Newcastle upon Tyne, UK.Google Scholar
Kuhry, P., 1997. The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology 96, 183224.CrossRefGoogle Scholar
Leipe, C., Demske, D., Tarasov, P.E., Wünnemann, B., Riedel, F., HIMPAC Project Members. 2014. Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human-environmental interactions. Quaternary International 348, 113129.CrossRefGoogle Scholar
Lowry, J.H. Jr., Ramsey, R.D., Boykin, K., Bradford, D., Comer, P., Falzarano, S., Kepner, W., et al., 2005. Southwest Regional Gap Analysis Project: Final Report on Land Cover Mapping Methods. RS/GIS Laboratory, Utah State University, Logan.Google Scholar
Mankinen, E.A., Roberts, C.W., McKee, E.D., Chuchel, B.A., Moring, B.C., 2006. Geophysical Data from the Spring and Snake Valleys Area, Nevada and Utah. Open-File Report 2006-1160. US Geological Survey, Menlo Park, CA.CrossRefGoogle Scholar
Medeanic, S., Bagatin Silva, M., 2010. Indicative value of non-pollen palynomorphs (NPPs) and palynofacies for palaeorenconstructions: Holocene peat, Brazil. International Journal of Coal Geology 84, 248257.CrossRefGoogle Scholar
Mensing, S.A., Sharpe, S.E., Tunno, I., Sada, D.W., Thomas, J.M., Starratt, S., Smith, J., 2013. The Late Holocene Dry Period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA. Quaternary Science Reviews 78, 266282.CrossRefGoogle Scholar
Miao, Y., Jin, H., Liu, B., Herrmann, M., Sun, Z., Wang, Y., 2015. Holocene climate change on the northeastern Tibetan Plateau inferred from mountain-slope pollen and non-pollen palynomorphs. Review of Palaeobotany and Palynology 221, 2231.CrossRefGoogle Scholar
Miola, A., 2012. Tools for non-pollen palynomorphs (NPPs) analysis: a list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology 186, 142161.CrossRefGoogle Scholar
Montoya, E., Rull, V., van Geel, B., 2010. Non-pollen palynomorph from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 169183.CrossRefGoogle Scholar
Montoya, E., Rull, V., Vegas-Villarúbia, T., 2012. Non-pollen palynomorphs studies in the Neotropics: the case of Venezuela. Review of Palaeobotany and Palynology 186, 102130.CrossRefGoogle Scholar
Mudie, P.J., Lelièvre, M.A., 2013. Palynological study of a Mi’kmaw shell midden, northeast Nova Scotia, Canada. Journal of Archaeological Science 40, 21612175.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., et al., 2016. vegan: Community Ecology Package. R package version 2.3-3. http://CRAN.R-project.org/package=vegan. Last Accessed 15 May 2016.Google Scholar
Orbay-Cerrato, M.E., Oswald, W.W., Doughty, E.D., Foster, D.R., Hall, B.R., 2017. Historic grazing in southern New England, USA, recorded by fungal spores in lake sediments. Vegetation History and Archaeobotany 26, 159165.CrossRefGoogle Scholar
Pals, J.P., van Geel, B., Delfos, A., 1980. Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (Prov. of Noord-Holland). Review of Palaeobotany and Palynology 30, 371418.CrossRefGoogle Scholar
Payne, R.P., Lamentowicz, M., van der Knaap, W.O., van Leeuwen, J.F.N., Mitchell, E.A.D., Mazei, Y., 2012. Testate amoebae in pollen slides. Review of Palaeobotany and Palynology 173, 6879.CrossRefGoogle Scholar
Pieńkowski, A.J., Mudie, P.J., England, J.H., Smith, J.N., Furze, M.F.A., 2011. Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Artic Archipelago: evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen. Journal of Quaternary Science 26, 839853.CrossRefGoogle Scholar
Plume, R.W., 1996. Hydrogeologic Framework of the Great Basin Region of Nevada, Utah, and Adjacent States. US Geological Survey Professional Paper 1409-B. US Government Printing Office, Washington, DC.CrossRefGoogle Scholar
Prager, A., Barthelmes, A., Theuerkauf, M., Joosten, H., 2006. Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Review of Palaeobotany and Palynology 141, 731.CrossRefGoogle Scholar
Prager, A., Theuerkauf, M., Couwenberg, J., Barthelmes, A., Aptroot, A., Joosten, H., 2012. Pollen and non-pollen palynomorphs as tools for identifying alder carr deposits: a surface sample study from NE-Germany. Review of Palaeobotany and Palynology 186, 3857.CrossRefGoogle Scholar
R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Revelles, J., Burjachs, F., van Geel, B., 2016. Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Draga (Girona, Spain). Review of Palaeobotany and Palynology 225, 120.CrossRefGoogle Scholar
Riess, K., Bauer, R., Kellner, R., Kemler, M., Piątek, M., Vánky, K., Begerow, D., 2015. Identification of a new order of root-colonising fungi in the Entorrhizomycota: Talbotiomycetales ord. nov. on the eudicotyledons. IMA Fungus 6, 129133.CrossRefGoogle ScholarPubMed
Rudolph, K., 1917. Untersuchungen über den Aufbau bömischer Moore. Aufbau und Entwicklungsgeschichte südböhmischer Hochmoore. Abhandlungen der Kaiserlich- königlichen zoologisch-botanischen Gesellschaft 9, 1116.Google Scholar
Sadori, L., Guardini, M., 2007. Charcoal analysis, a method to study vegetation and climate of the Holocene: the case of Lago di Pergusa (Sicily, Italy). Geobios 40, 173180.CrossRefGoogle Scholar
Schweinggruber, F.H., 1990. Microscopic Wood Anatomy. 3rd ed. Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, Zürich, Switzerland.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615621.Google Scholar
van Geel, B., 1972. Palynology of a section from the raised peat bog “Wietmarscher Moor”, with special reference to fungal remains. Acta Botanica Neerlandica 21, 261284.CrossRefGoogle Scholar
van Geel, B., 1976. Fossil spores of Zygnemataceae in ditches of a pre-historic settlement in Hoogkarspel (The Netherlands). Review of Palaeobotany and Palynology 22, 337344.CrossRefGoogle Scholar
van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Review of Palaeobotany and Palynology 25, 1120.CrossRefGoogle Scholar
van Geel, B., 2001. Non-pollen palynomorphs. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lake Sediments. Vol. 3, Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Press, Dordrecht, the Netherlands, pp. 99119.Google Scholar
van Geel, B., Aptroot, A., 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313329.CrossRefGoogle Scholar
van Geel, B., Bohncke, S.J.P., Dee, H., 1981. A palaecological study of an upper Late Glacial and Holocene sequence from “De Borchert”. The Netherlands. Review of Palaeobotany and Palynology 31, 367448.CrossRefGoogle Scholar
van Geel, B., Buurman, J., Brikkemper, O., Schelvis, J., Aptroot, A., van Reenen, G., Hakbijl, T., 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.CrossRefGoogle Scholar
van Geel, B., Coope, G.R., van der Hammen, T., 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60, 25129.CrossRefGoogle Scholar
van Geel, B., Grenfell, H.R., 1996. Spores of Zygnemataceae. In: Jansonius, J., McGregor, D.C. (Eds.), Palynology: Principles and Applications. Vol. 1, Principles. American Association of Stratigraphic Palynologists Foundation, Dallas, TX, pp. 173179.Google Scholar
van Geel, B., Gelorini, V., Lyaruu, A., Aptroot, A., Rucina, S., Marchant, R., Sinnenghe Damsté, J.S., Verschuren, D., 2011. Diversity and ecology of tropical fungal spores from a 25,000-year palaeoenvironmental record in southeastern of Kenya. Review of Palaeobotany and Palynology 164, 174190.CrossRefGoogle Scholar
van Geel, B., Hallewas, D.P., Pals, J.P., 1983. A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology 38, 269335.CrossRefGoogle Scholar
Vánky, K., 1994. European Smut Fungi. Gustav Fischer Verlag, Stuttgart, Germany.Google Scholar
Welch, A.H., Bright, D.J., Knochenmus, L.A. (Eds.), 2007. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah. Scientific Investigations Report 2007-5261. US Geological Survey, Reston, VA.CrossRefGoogle Scholar
Wołowski, K., Grabowska, M., 2007. Trachelomonas species as the main component of the euglenophyte community in the Siemianówska Reservoir (Narew River, Poland). Annales de Limnologie – International Journal of Limnology 43, 207218.CrossRefGoogle Scholar
Wołowski, K., Walne, P.L., 2007. Strombomonas and Trachelomonas species (Euglenophyta) from south-eastern USA. European Journal of Phycology 42, 409431.CrossRefGoogle Scholar