Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T06:25:26.229Z Has data issue: false hasContentIssue false

Unstable Behavior of the Laurentide Ice Sheet over Deforming Sediment and Its Implications for Climate Change

Published online by Cambridge University Press:  20 January 2017

Peter U. Clark*
Affiliation:
Department of Geosciences, Oregon State University, Corvallis, Oregon 97331

Abstract

Geologic records of fluctuations of the Laurentide ice sheet margin following the most recent glacial maximum (ca. 20,000 14C yr B.P.) identify fundamental differences in ice-sheet behavior depending on subglacial bed conditions. Rapid and irregular icemargin fluctuations occurred only over areas of deforming sediment, indicating nonclimatic forcing controlled by the inherent instability of coupled ice sheet-deforming sediment dynamics. In contrast, largely uninterrupted ice-margin retreat with no evidence of significant readvance occurred over rigid-bed areas, indicating stable behavior. Unstable ice-sheet behavior was most pronounced from 15,000 until 10,000 14C yr B.P., by which time most of the ice margin had retreated onto a rigid bed. Unstable ice-sheet behavior would have been an integral component in controlling variable fluxes of icebergs and meltwater, as well as meltwater routing, to the North Atlantic, thus affecting thermohaline circulation. The abrupt climate oscillations in the North Atlantic region that ended at 10,000 14C yr B.P. may thus have their origin in the inherently unstable behavior of the Laurentide ice sheet overriding deforming sediment.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R. B. (1991). Deforming-bed origin for southern Laurentide till sheets? Journal of Glaciology 37, 6776.Google Scholar
Alley, R. B. Blankenship, D. D. Bentley, C. R., and Rooney, S. T.. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 5759.Google Scholar
Alley, R. B. Blankenship, D. D. Bentley, C. R., and Rooney, S. T. (1987). Till beneath ice stream B, 3, till deformation: Evidence and implications. Journal of Geophysical Research 92, 89218929.CrossRefGoogle Scholar
Alley, R. B., and Whillans, I. M. (1991). Changes in the West Antarctic ice sheet. Science 254, 959963.Google Scholar
Alley, R. B. Meese, D. A. Shuman, C. A. Gow, A. J. Taylor, K. C. Grootes, P. M. White, J. W. C., Ram, M. Waddington, E. D. Mayewski, P. A., and Zielinski, G. A. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527529.Google Scholar
Andersen, B. G. (1981). Late Weichselian ice sheets in Eurasia and Greenland. In “The Last Great Ice Sheets” (Denton, G. H. and Hughes, T. J., Eds.), pp. 366. Wiley, New York.Google Scholar
Andrews, J. T., and Tedesco, K. (1992). Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic. Geology 20, 10871090.Google Scholar
Bard, E. Hamelin, B. Fairbanks, R. G., and Zindler, A. (1990). Calibration of the l4C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405410.CrossRefGoogle Scholar
Berger, A. L. (1978). Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9, 139167.CrossRefGoogle Scholar
Bond, G. Heinrich, H. Broecker, W. Labeyrie, L. McManus, J. Andrews, J. Huon, S. Jantschik, R. Clasen, S. Simet, C. Tedesco, K. Klas, M. Bonani, G., and Ivy, S. (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245249.Google Scholar
Boulton, G. S. Smith, G. D. Jones, A. S., and Newsome, J. (1985). Glacial geology and glaciology of the last mid-latitude ice sheets. Journal of the Geological Society of London 142, 447474.Google Scholar
Broecker, W. S. Peteet, D. M., and Rind, D. (1985). Does the oceanatmosphere system have more than one stable mode of operation? Nature 315, 2125.CrossRefGoogle Scholar
Broecker, W. S. Kennett, J. P. Flower, B. P. Teller, J. T. Trumbore, S. Bonani, G., and Wolfli, W. (1989). Routing of meltwater from the Laurentide ice sheet during the Younger Dryas cold episode. Nature 341, 318321.Google Scholar
Calkin, P. E., and Feenstra, B. H. (1985). Evolution of the Erie-Basin Great Lakes. In “Quaternary Evolution of the Great Lakes” (Karrow, P. F. and Calkin, P. E., Eds.), pp. 149170. Geological Association of Canada Special Paper 30, St. John’s, Newfoundland.Google Scholar
Charles, C. D., and Fairbanks, R. G. (1992). Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355, 416419.Google Scholar
Clark, P. U. (1991). Striated clast pavements: Products of deforming subglacial sediment? Geology 19, 530533.2.3.CO;2>CrossRefGoogle Scholar
Clark, P. U. (1992). Surface form of the southern Laurentide ice sheet and its implications to ice-sheet dynamics. Geological Society of America Bulletin 104, 595605.2.3.CO;2>CrossRefGoogle Scholar
Clark, P. U., and Walder, J. S. Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin , in press.Google Scholar
Clarke, G. K. C. (1987). Fast glacier flow: Ice streams, surging, and tidewater glaciers. Journal of Geophysical Research 92, 88358841.Google Scholar
Clayton, L., and Moran, S. R. (1982). Chronology of Late Wisconsinan glaciation in middle North America. Quaternary Science Reviews 1, 5582.CrossRefGoogle Scholar
Clayton, L. Teller, J. T., and Attig, J. W. (1985). Surging of the southwestern part of the Laurentide ice sheet. Boreas 14, 235242.CrossRefGoogle Scholar
Dansgaard, W. Clausen, H. B. Gundestrup, N. Hammer, C. U. Johnsen, S. F, Kristinsdottir, P. M., and Reeh, N. (1982). A new Greenland deep ice core. Science 218, 12731277.Google Scholar
Dredge, L. A., and Cowan, W. R. (1989). Quaternary geology of the southwestern Canadian Shield. In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), pp. 214235. Geological Survey of Canada, Geology of Canada, No. 1, Ottawa.Google Scholar
Dreimanis, A. (1977). Late Wisconsin glacial retreat in the Great Lakes region, North America. New York Academy of Science Annals 288, 7089.Google Scholar
Dreimanis, A., and Goldthwait, R. P. (1973). Wisconsin glaciation in the Huron, Erie, and Ontario lobes. Geological Society of America Mem-oir 136, 71106.CrossRefGoogle Scholar
Dyke, A. S., and Prest, V. K. (1987a). The Late Wisconsinan and Holocene history of the Laurentide ice sheet. Geographie physique et Quaternaire, 41, 237263.CrossRefGoogle Scholar
Dyke, A. S., and Prest, V. K. (1987b). “Paleogeography of Northern North America, 18,000-5,000 Years Ago.” Geological Survey of Canada, Map 1703A, scale 1:12,500,000.Google Scholar
Dyke, A. S., and Prest, V. K. (1987c). “Late Wisconsinan and Holocene Retreat of the Laurentide Ice Sheet.” Geological Survey of Canada, Map 1702A, scale 1:5,000,000.Google Scholar
Dyke, A. S. Vincent, J.-S. Andrews, J. T. Dredge, L. A., and Cowan, W. R. (1989). The Laurentide Ice Sheet and an introduction to the Quaternary geology of the Canadian Shield. In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), pp. 178189. Geological Survey of Canada, Geology of Canada, No. 1, Ottawa.Google Scholar
Fisher, D. A. Reeh, N., and Langley, K. (1985). Objective reconstructions of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. Geographie physique et Quaternaire 39, 229238.CrossRefGoogle Scholar
Freeze, R. A., and Cherry, J. A. (1979). “Groundwater.” Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Fullerton, D. S., and Colton, R. B. (1986). Stratigraphy and correlation of the glacial deposits on the Montana Plains. Quaternary Science Reviews 5, 6982.Google Scholar
Grousset, F. E. Labeyrie, L. Sinko, J. A. Cremer, M. Bond, G. Duprat, J. Cortijo, E., and Huon, S. (1993). Patterns of ice-rafted detritus in the glacial North Atlantic (40-55°N). Paleoceanography 8, 175192.CrossRefGoogle Scholar
Hansel, A. K., and Johnson, W. H. (1992). Fluctuations of the Lake Michigan lobe during the late Wisconsin subepisode. Sveriges Geologiska Undersokning 81, 133144.Google Scholar
Hays, J. D. Imbrie, J., and Shackleton, N. J. (1976). Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science 194, 11211132.CrossRefGoogle ScholarPubMed
Hicock, S. R., and Dreimanis, A. (1992). Deformation till in the Great Lakes region: Implications for rapid flow along the south-central margin of the Laurentide ice sheet. Canadian Journal of Earth Sciences 29, 15651579.CrossRefGoogle Scholar
Hughes, T. (1992). Abrupt climatic change related to unstable ice-sheet dynamics: Toward a new paradigm. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 97, 203234.CrossRefGoogle Scholar
Humphrey, N. F. Kamb, B. Fahnestock, M., and Engelhardt, H. (1993). Characteristics of the bed of the lower Columbia Glacier, Alaska. Journal of Geophysical Research 98, 837846.Google Scholar
Imbrie, J. Hays, J. D. Martinson, D. G. McIntyre, A. Mix, A. C. MorJey, JJ. Pisias, N. G. Prell, W. L., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 180 record. In “Milankovitch and Climate, Part I” (Berger, A. L. et al., Eds.), pp. 269305. Reidel, Dordrecht.Google Scholar
Johnsen, S. 3. Clausen, H.B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Jouzel, J. Stauffer, B., and Steffensen, J. P. (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.Google Scholar
Karpuz, N. K., and Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes. Paleoceanography 7, 499520.Google Scholar
Kaufman, D. S. Miller, G. H. Stravers, J. A., and Andrews, J. T. An abrupt early-Holocene (9.9-9.6 ka) ice stream advance at the mouth of Hudson Strait, Arctic Canada. Geology, in press.Google Scholar
Keigwin, L. D. Jones, G. A. Lehman, S. J., and Boyle, E. A. (1991). Deglacial meitwater discharge, North Atlantic deep circulation, and abrupt climate change. Journal of Geophysical Research 96, 16,81116,826.Google Scholar
King, G. A. (1985). A standard method for evaluating radiocarbon dates of local deglaciation: Application to the deglaciation history of southern Labrador and adjacent Quebec. Geographie physique et Quaternaire 39, 163182.CrossRefGoogle Scholar
Klassen, R. W. (1989) Quaternary geology of the southern Canadian Interior Plains. In “Quaternary Geology of Canada and Greenland” (Fulton, R. J., Ed.), pp. 138173. Geological Survey of Canada, Geology of Canada, No. I, Ottawa.Google Scholar
Larsen, F. D., and Hartshorn, J. H. (1982). Deglaciation of the southern portion of the Connecticut Valley of Massachusetts. In “Late Wisconsinan Glaciation of New England” (Larson, G. J. and Stone, B. D., Eds.), pp. 115128. KendalliHunt, Dubuque, I A.Google Scholar
LaSalle, P., and Shilts, W. W. (1993) Younger Dryas-age readvance of Laurentide ice into the Champlain Sea. Boreas 22, 2537.Google Scholar
Lehman, S. J., and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757762.Google Scholar
MacAyeal, D. R. Growth/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography, in press.Google Scholar
Manabe, S., and Broccoli, A. J. (1985). The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research 90, 21672190.Google Scholar
Meier, M. F., and Post, A. (1987). Fast tidewater glaciers. Journal of Geophysical Research 92, 90519058.Google Scholar
Mickelson, D. M. Acomb, L. J., and Bentley, C. R. (1981). Possible mechanisms for the rapid advance and retreat of the Lake Michigan Lobe between 13,000 and 11,000 years BP. Annals of Glaciology 2, 185186.Google Scholar
Mickelson, D. M. Clayton, L. Fullerton, D. S., and Boms, H. W. Jr., (1983). The late Wisconsin glacial record of the Laurentide ice sheet in the United States. In “Late-Quaternary Environments of the United States” (Wright, H. E. Jr. and Porter, S. C., Eds.), pp. 337. Univ of Minnesota Press, Minneapolis.Google Scholar
Miller, G. H., and Kaufman, D. S. (1990). Rapid fluctuations of the Laurentide ice sheet at the mouth of Hudson Strait: New evidence for oceanic/ice sheet interactions as a control on the Younger Dryas. Paleoceanography 5, 907919.CrossRefGoogle Scholar
Overpeck, J. T. Petersen, L. C. Kipp, N. Imbrie, J., and Rind, D. (1989). Climate change in the circum-North Atlantic region during the last deglaciation. Nature 338, 553557.Google Scholar
Prest, V. K. (1970). Quaternary geology of Canada. In “Geology and Economic Minerals of Canada” (Douglas, R. J. W., Ed.), pp. 676764. Geological Survey of Canada, Economic Geology Report 1, 5th ed., Ottawa.Google Scholar
Ridge, J. C., and Larsen, F. D. (1990). Re-evaluation of Antevs’ New England varve chronology and new radiocarbon dates of sediments from glacial Lake Hitchcock. Geological Society of America Bulletin 102, 889899.Google Scholar
Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography 11, 131149.Google Scholar
Ruddiman, W. F. (1987). Northern oceans. In “North America and Adjacent Oceans During the Last Deglaciation” (Ruddiman, W. F. and Wright, H. E. Jr., Eds.), pp. 137154. Geological Society of America, The Geology of North America, Vol. K-3, Boulder.Google Scholar
Ruddiman, W. F., and McIntyre, A. (1981). Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle. Science 212, 617627.Google Scholar
Scott, J. S. (1976). Geology of Canadian tills. In “Glacial Till: An Interdisciplinary Study” (Legget, R. F., Ed.), pp. 5066. Royal Society of Canada Special Publication 12, Ottawa.Google Scholar
Sirkin, L. (1982). Wjsconsinan glaciation of Long Island, New York, to Block Island, Rhode Island. In “Late Wisconsinan Glaciation of New England” (Larson, G. J. and Stone, B. D., Eds.), pp. 3559. Kendall/Hunt, Dubuque, I A.Google Scholar
Taylor, K. C. Lamorey, G. W. Doyle, G. A. Alley, R. B. Grootes, P. M. Mayewski, P. A. White, J. W. C., and Barlow, L. K. (1993). The “flickering switch” of late Pleistocene climate change. Nature 361, 432436.CrossRefGoogle Scholar
Teller, J. T. (1987). Proglacial lakes and the southern margin of the Laurentide ice sheet. In “North America and Adjacent Oceans During the Last Deglaciation” (Ruddiman, W. F. and Wright, H. E. Jr., Eds.), pp. 3970. Geological Society of America, The Geology of North America, Vol. K-3, Boulder.Google Scholar
Wright, H. E. Jr., (1973). T\innel valleys, glacial surges, and subglacial hydrology of the Superior Lobe, Minnesota. Geological Society of America Memoir 136, 251276.Google Scholar