Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T23:00:04.688Z Has data issue: false hasContentIssue false

Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico

Published online by Cambridge University Press:  20 January 2017

Franco Biondi*
Affiliation:
Department of Geography, University of Nevada, Mail Stop 154, Reno, NV 89557-0048, USA
Ignacio Galindo Estrada
Affiliation:
Ciencias del Ambiente, Universidad de Colima, Bernal Diaz del Castillo #340, Colima, CP 28045, Colima, Mexico
Juan Carlos Gavilanes Ruiz
Affiliation:
Ciencias del Ambiente, Universidad de Colima, Bernal Diaz del Castillo #340, Colima, CP 28045, Colima, Mexico
Alejandro Elizalde Torres
Affiliation:
Ciencias del Ambiente, Universidad de Colima, Bernal Diaz del Castillo #340, Colima, CP 28045, Colima, Mexico
*
*Corresponding author. Fax: +1-775-784-1058. Email Address:[email protected]

Abstract

The impact of volcanic eruptions on forest ecosystems can be investigated using dendrochronological records. While long-range effects are usually mediated by decreased air temperatures, resulting in frost rings or reduced maximum latewood density, local effects include abrupt suppression of radial growth, occasionally followed by greater than normal growth rates. Annual rings in Mexican mountain pine (Pinus hartwegii Lindl.) on Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, indicate extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of Volcán de Fuego, 7.7 km to the south. That event, which is listed among the largest explosive eruptions since A.D. 1500, produced ashflow deposits up to 40 m thick and blanketed our study area on Nevado de Colima with a tephra fallout 15–30 cm deep. Radial growth reduction in 1913–14 was ≥30% in 73% of the sampled trees. We geostatistically investigated the ecological impact of the eruption by mapping the decrease in xylem increment and found no evidence of a spatial structure in growth reduction. Little information has been available to date on forest species as biological archives of past environments in the North American tropics, yet this historical case study suggests that treeline tropical sites hold valuable records of prehistoric phenomena, including volcanic eruptions.

Type
Articles
Copyright
Elsevier Science (USA)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M.D., Copenheaver, C.A., Terazawa, K., Umeki, K., Takiya, M., and Akashi, N. A 370-year dendroecological history of an old-growth Abies-Acer-Quercus forest in Hokkaido, northern Japan. Canadian Journal of Forest Research 29, (1999). 1891 1899.CrossRefGoogle Scholar
Beaman, J.H. The timberlines of Iztaccihuatl and Popocatepetl, Mexico. Ecology 43, (1962). 377 385.Google Scholar
Biondi, F. Climatic signals in tree-rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecologica 14, (1993). 57 71.Google Scholar
Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications 9, (1999). 216 227.Google Scholar
Biondi, F. A 400-year tree-ring chronology from the tropical treeline of North America. Ambio 30, (2001). 162 166.CrossRefGoogle ScholarPubMed
Biondi, F. Treeline dendroclimatology in the North American tropics. PAGES News 10, (2002). 9 10.CrossRefGoogle Scholar
Biondi, F., and Fessenden, J.E. Radiocarbon analysis of Pinus lagunae tree rings. implications for tropical dendrochronology. Radiocarbon 41, (1999). 241 249.CrossRefGoogle Scholar
Biondi, F., Myers, D.E., and Avery, C.C. Geostatistically modeling stem size and increment in an old-growth forest. Canadian Journal of Forest Research 24, (1994). 1354 1368.CrossRefGoogle Scholar
Bretón Gonzáles, M., Ramirez, J.J., and Navarro, C. Summary of the historical eruptive activity of Volcán de Colima, Mexico 1519–2000. Journal of Volcanology and Geothermal Research 117, (2002). 21 46.CrossRefGoogle Scholar
Briffa, K.R., Jones, P.D., Schweingruber, F.H., and Osborn, T.J. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393, (1998). 450 454.CrossRefGoogle Scholar
Druce, A.P. Tree-ring dating of recent volcanic ash and lapilli, Mt Egmont. New Zealand Journal of Botany 4, (1966). 3 41.CrossRefGoogle Scholar
Eggler, W.A. Influence of volcanic eruptions on xylem growth patterns. Ecology 48, (1967). 644 647.CrossRefGoogle Scholar
Fierstein, J., and Hildreth, W. The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bulletin of Volcanology 54, (1992). 646 684.Google Scholar
Fritts, H.C. Tree Rings and Climate. (1976). Academic Press, London.Google Scholar
Galindo Estrada, I., Elizalde Torres, A., Solano Barajas, R., Cruz Calvario, M., (1998). Climatologia del Volcán de Fuego de Colima. Universidad de Colima, Colima, Col., Mexico.Google Scholar
Glock, W.S., and Agerter, S.R. Anomalous patterns in tree rings. Endeavour 22, (1963). 9 13.CrossRefGoogle Scholar
Harrington, C.R., (1992). The Year Without a Summer? World Climate in 1816. Canadian Museum of Nature, Ottawa.Google Scholar
Hinckley, T.M., Imoto, H., Lee, K., Lacker, S., Morikawa, Y., Vogt, K.A., Grier, C.C., Keyes, M.R., Teskey, R.O., and Seymour, V. Impact of tephra deposition on growth in conifers. the year of the eruption. Canadian Journal of Forest Research 14, (1984). 731 739.CrossRefGoogle Scholar
Hinckley, T.M., Sprugel, D.G., Brooks, J.R., Brown, K.J., Martin, T.A., Roberts, D.A., Schaap, W., and Wang, D. Scaling and integration in trees. Peterson, D.L., and Parker, V.T. Ecological Scale. Theory and Applications. (1998). Columbia Univ. Press, New York. 309 337.Google Scholar
Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, (1983). 69 78.Google Scholar
Hulme, M. A 1951-80 global land precipitation climatology for the evaluation of General Circulation Models. Climate Dynamics 7, (1992). 57 72.CrossRefGoogle Scholar
Hulme, M., (1999). ‘gu23wld0098.dat’, Version 1.0. http://www.cru.uea.ac.uk/∼mikeh/datasets/global/ Google Scholar
Hulme, M., Osborn, T.J., and Johns, T.C. Precipitation sensitivity to global warming. comparison of observations with HadCM2 simulations. Geophysical Research Letters 25, (1998). 3379 3382.CrossRefGoogle Scholar
Isaaks, E.H., and Srivastava, R.M. An Introduction to Applied Geostatistics. (1989). Oxford Univ. Press, New York.Google Scholar
Kramer, P.J., and Kozlowski, T.T. Physiology of Woody Plants. (1979). Academic Press, Orlando, FL.Google Scholar
Kuo, M.-L., McGinnes, E.A. Jr. Variation of anatomical structure of false rings in eastern redcedar. Wood Science 5, (1973). 205 210.Google Scholar
LaMarche, V.C. Jr., and Hirschboeck, K.K. Frost rings in trees as records of major volcanic eruptions. Nature 307, (1984). 121 126.Google Scholar
Larson, P.R. Auxin gradients and the regulation of cambial activity. Kozlowski, T.T. Tree Growth. (1962). Ronald Press, New York. 87 117.Google Scholar
Lauer, W. Timberline studies in central Mexico. Arctic and Alpine Research 10, (1978). 383 396.Google Scholar
Luhr, J. Colima. history and cyclicity of eruptions. Volcano News 7, (1981). 1 3.Google Scholar
Madrigal Sánchez, X., (1970). Caracterizacion Fito-ecologica Preliminar de los Volcanes de Fuego y Nevado de Colima (Mexico). Instituto Nacional de Investigaciones Forestales, Mexico City.Google Scholar
Mahler, R.L., and Fosberg, M.A. The influence of Mount St. Helens volcanic ash on plant growth and nutrient uptake. Soil Science 135, (1983). 197 201.Google Scholar
Martin del Pozzo, A.L., and Sheridan, M. Volcán de Colima. Geofisica Internacional 32, (1993). 541 542.Google Scholar
Martin del Pozzo, A.L., Sheridan, M., Barrera, D., Lugo Hubp, J., and Vázquez Selem, L. Potential hazards from Colima volcano, Mexico. Geofisica Internacional 34, (1995). 363 376.CrossRefGoogle Scholar
McVaugh, R., (1992). Flora Novo-Galiciana. The University of Michigan Herbarium, Ann Arbor.Google Scholar
Medina Martinez, F. Analysis of the eruptive history of the Volcan de Colima, Mexico (1560–1980). Geofisica Internacional 22, (1983). 157 178.Google Scholar
Minnis, P., Harrison, E.F., Stowe, L.L., Gibson, G.G., Denn, F.M., Doelling, D.R., Smith, W.L. Jr. Radiative Climate Forcing by the Mount-Pinatubo Eruption. Science 259, (1993). 1411 1415.Google Scholar
Newhall, C.G., and Self, S. The Volcanic Explosivity Index (VEI). an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research 87, (1982). 1231 1238.CrossRefGoogle Scholar
Panshin, A.J., and de Zeeuw, C. Textbook of Wood Technology. 4th ed (1980). McGraw-Hill, New York.Google Scholar
Robin, C., Camus, G., and Gourgaud, A. Eruptive and magmatic cycles at Fuego de Colima Volcano (Mexico). Journal of Volcanology and Geothermal Research 45, (1991). 209 225.Google Scholar
Saucedo Girón, R., (1997). Reconstruccion de la Erupción de 1913 del Volcan de Colima. Universidad Nacional Autonoma de Mexico, Google Scholar
Saucedo Girón, R., and Macias Vázquez, J.L. La historia del Volcán de Colima. Tierra Adentro 98, (1999). 8 15.Google Scholar
Segura, G., Brubaker, L.B., Franklin, J.F., Hinckley, T.M., Maguire, D.A., and Wright, G. Recent mortality and decline in mature Abies amabilis. the interaction between site factors and tephra deposition from Mount St. Helens. Canadian Journal of Forest Research 24, (1994). 1112 1122.Google Scholar
Segura, G., Hinckley, T.M., and Brubaker, L.B. Variations in radial growth of declining old-growth stands of Abies amabilis after tephra deposition from Mount St. Helens. Canadian Journal of Forest Research 25, (1995). 1484 1492.CrossRefGoogle Scholar
Segura, G., Hinckley, T.M., and Oliver, C.D. Stem growth responses of declining mature Abies amabilis trees after tephra deposition from Mount St. Helens. Canadian Journal of Forest Research 25, (1995). 1493 1502.Google Scholar
Seymour, V.A., Hinckley, T.M., Morikawa, Y., and Franklin, J.F. Foliage damage in coniferous trees following volcanic ashfall from Mt. St. Helens (Washington State). Oecologia 59, (1983). 339 343.Google Scholar
Simkin, T., and Siebert, L. Volcanoes of the World. A Regional Directory, Gazetteer, and Chronology of Volcanism During the Last 10,000 Years. (1994). Geoscience Press, Tucson, AZ.Google Scholar
Smiley, T.L. The geology and dating of Sunset Crater, Flagstaff, Arizona. Anderson, R.Y., and Harshberger, J.W. Guidebook of the Black Mesa Basin, Northeastern Arizona. (1958). New Mexico Geological Society, Socorro. 186 190.Google Scholar
Waitz, P. Der gegenwärtige Stand der Mexikanischen Vulkane und die letzte Eruption des Vulkans von Colima (1913). Zeitschrift für Vulkanologie 1, (1914). 247 274.Google Scholar
Waliser, D.E., Shi, Z., Lanzante, J.R., and Oort, A.H. The Hadley circulation. assessing NCEP/NCAR reanalysis and sparse in situ estimates. Climate Dynamics 15, (1999). 719 735.Google Scholar
Yamaguchi, D.K. New tree-ring dates for recent eruptions of Mount St. Helens. Quaternary Research 20, (1983). 246 250.Google Scholar
Yamaguchi, D.K. Tree-ring evidence for a two-year interval between recent prehistoric explosive eruptions of Mount St. Helens. Geology 13, (1985). 554 557.Google Scholar