Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-15T22:56:36.445Z Has data issue: false hasContentIssue false

Tracking Late Holocene climate change and the 1908 Tunguska impact event from lake sediments in Central Siberia

Published online by Cambridge University Press:  13 February 2025

D.Y. Rogozin*
Affiliation:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50-50, 660036, Krasnoyarsk, Russia Siberian Federal University, 79 Svobodnyi Ave., Krasnoyarsk 660041, Russia
L.B. Nazarova
Affiliation:
Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, 14473 Potsdam, Germany
N.A. Rudaya
Affiliation:
Institute of Archaeology & Ethnography, Russian Academy of Sciences, Siberian Branch, 17 Lavrentieva Ave., 630090, Novosibirsk, Russia Biological Institute, Tomsk State University, 36 Lenina str., 634050, Tomsk, Russia
L.A. Frolova
Affiliation:
Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia Institute of Archaeology & Ethnography, Russian Academy of Sciences, Siberian Branch, 17 Lavrentieva Ave., 630090, Novosibirsk, Russia
G.N. Bolobanshchikova
Affiliation:
Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Akademgorodok 50-50, 660036, Krasnoyarsk, Russia
O.V. Palagushkina
Affiliation:
Kazan Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
A.V. Darin
Affiliation:
Institute of Geology and Mineralogy Siberian Branch of Russian Academy of Sciences, 3 Prospekt Koptyuga, 630090, Novosibirsk, Russia
A.V. Meydus
Affiliation:
Astafiev Krasnoyarsk State Pedagogical University, 89 Ady Lebedevoi, 660049, Krasnoyarsk, Russia
*
Corresponding author: D.Y. Rogozin; Email: [email protected]

Abstract

We studied a 2200-year-old sediment core from Lake Zapovednoye, a small, deep, freshwater lake near the site of the 1908 Tunguska impact event. Analysis of the sediment core for geochemistry, pollen, chironomids, Cladocera, and diatoms revealed traces of climatic fluctuations during the investigated time period during which a cool climate before 1000 CE was replaced by the Medieval Climatic Optimum, the Little Ice Age, and finally the modern warming. An increased content of terrigenous elements was identified at the depth corresponding to ca. 1908 CE. This layer presumably resulted from erosion of the soil cover after the tree fall caused by the Tunguska impact event (the largest recorded in history). For the first time, the reaction of lake biota to an impact event has been detected. Our study has demonstrated that the taxonomic diversity of hydrobionts (chironomids and cladocerans) significantly declined after the catastrophe, probably due to increased turbidity, and recovered in 6–10 years. The pollen and diatom assemblages, however, demonstrated weaker compositional shifts.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramov, N.G., Arkayev, E.A., Russkikh, A.G., 2003. The study of fire of 1908 at the area of Tunguska meteorite. In: Vasiliev, N.V., Plekhanov, G.F., Logunova, L.N. et al. (Eds.), Tungusski Natural Reserve. Proceedings 1. [In Russian.] Tomsk State University, Tomsk, pp. 275289.Google Scholar
Agatova, A.R., Nazarov, A.N., Nepop, R.K., Rodnight, H., 2012. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quaternary Science Reviews 43, 7493.CrossRefGoogle Scholar
Andreev, A., Siegert, C., Klimanov, V., Derevyagin, A., Shilova, G.N., Melles, M., 2002. Late Pleistocene and Holocene vegetation and climate on the Taymyr Lowland, Northern Siberia. Quaternary Research 57, 138150.CrossRefGoogle Scholar
Baisheva, I., Biskaborn, B., Stoof-Leichsenring, K., Andreev, A., Heim, B., Meucci, S., Ushnitskaya, L., et al., 2024. Late Glacial and Holocene vegetation and lake changes in SW Yakutia, Siberia, inferred from sedaDNA, pollen, and XRF data. Frontiers in Earth Science, 12, 1354284. https://doi.org/10.3389/feart.2024.1354284CrossRefGoogle Scholar
Battarbee, R.W., 1986. Diatom analysis. In: Berglund, B.E. (Ed.), Handbook of Holocene Paleolimnology and Paleohydrology. J. Wiley & Sons, Chichester, England, pp. 527570.Google Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.CrossRefGoogle Scholar
Birks, H.J.B., Gordon, A.D., 1985. The analysis of pollen stratigraphical data: zonation. In: Birks, H.J.B., Gordon, A.D. (Eds.), Numerical Methods in Quaternary Pollen Analysis. Academic Press, London, pp. 4790.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F., 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, Series B 327, 263278.Google Scholar
Biskaborn, B.K., Nazarova, L., Pestryakova, L.A., Syrykh, L., Funck, K., Meyer, H., Chapligin, B., et al., 2019. Spatial distribution of environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia, Russia. Biogeosciences 16, 40234049.CrossRefGoogle Scholar
Biskaborn, B.K., Subetto, D.A., Savelieva, L.A., Vakhrameeva, P.R., Hansche, A., Hezschuh, U., Klemm, J., et al., 2015. Late Quaternary vegetation and lake system dynamics in North-Eastern Siberia: implications for seasonal climate variability. Quaternary Science Reviews 147, 406421.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O., Ammann, B., 2007. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 245, 518534.CrossRefGoogle Scholar
Boës, X., Fagel, N., 2005. Impregnation method for detecting annual laminations in sediment cores: an overview. Sedimentary Geology 179, 185194.CrossRefGoogle Scholar
Bolobanshchikova, G.N., Rogozin, D. Yu., Firsova, A.D., Radionova, E.V., Degermendzhy, N.N., Shabanov, A.V., 2015. Analysis of diatoms in the water column and bottom sediments of Lake Shira (Khakassia, Russia). Contemporary Problems of Ecology 2, 215228.Google Scholar
Brooks, S.J., Birks, H.J.B., 2001. Chironomid-inferred air temperatures from late-glacial and Holocene sites in North-West Europe: progress and problems. Quaternary Science Reviews 20, 17231741.CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G., Heiri, O., 2007. Using and Identifying Chironomid Larvae in Palaeoecology. QRA Technical Guide No 10. Quaternary Research Association, London.Google Scholar
Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., et al., 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geosciences 9, 231236.CrossRefGoogle Scholar
Burlakov, P.S., Khmara, K.A., Belyayev, V.V., 2009. Features of the Siberian fir population Abies sibirica Ledeb. on the northwestern border of the range (river Usolka, river basin of the Northern Dvina). [In Russian.] Arctic Environmental Research 2, 5157.Google Scholar
Camburn, K.E., Charles, D.F., 2000. Diatoms of low-alkalinity lakes in the northeastern United States. Academy of Natural Sciences of Philadelphia, Special Publication 18.Google Scholar
Cao, X., Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Xu, Q., and Herzschuh, U., 2019. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. Climate of the Past 15, 15031536.CrossRefGoogle Scholar
Darin, A.V., Rogozin, D.Y., Meydus, A.V., Babich, V.V., Kalugin, I.A., Markovich, T.A., Rakshun, Ya. V., et al. 2020. Traces of “Tunguska 1908” event in sediments of Lake Zapovednoye according to SR-XRF data. Doklady Earth Sciences 492, 442445.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley and Sons, Chichester, England.Google Scholar
Farinella, P., Foschini, L., Froeschlé, C., Gonczi, R., Jopek, T.J., Longo, G., Michel, P., 2001. Probable asteroidal origin of the Tunguska Cosmic Body. Astronomy & Astrophysics 377, 10811097.CrossRefGoogle Scholar
Fedotov, A.P., Phedorin, M.A., Enushchenko, I.V., Vershinin, K.E., Krapivina, S.M., Vologina, E.G., Petrovskii, S.K., Melgunov, M.S., Sklyarova, O.A., 2013. Drastic desalination of small lakes in East Siberia (Russia) in the early twentieth century: inferred from sedimentological, geochemical and palynological composition of small lakes. Environmental Earth Sciences 68, 17331744.CrossRefGoogle Scholar
Fedotov, A.P., Vorobyeva, S.S., Vershinin, K.E., Nurgaliev, D.K., Enushchenko, I.V., Krapivina, S.M., Tarakanova, K.V., Ziborova, G.A., Yassonov, P.G., Borissov, A.S., 2012. Climate changes in East Siberia (Russia) in the Holocene based on diatom, chironomid and pollen records from sediments of Lake Kotokel. Journal of Paleolimnology 47, 617630.CrossRefGoogle Scholar
Frolova, L.A., 2012. Cladocera. In: Nazarova, L.B. (Ed.), Biological Indicators in Paleobiological Research: Atlas. [In Russian.] Kazan University, Kazan, pp. 6487.Google Scholar
Frolova, L.A., Ibragimova, A.G., Ulrich, M., Wetterich, S., 2017. Reconstruction of the history of a thermokarst lake in the Mid-Holocene based on an analysis of subfossil Cladocera (Siberia, Central Yakutia). Contemporary Problems of Ecology 10, 423430.CrossRefGoogle Scholar
Frolova, L.A., Nigmatullin, N.M., Frolova, A.A., Nazarova, L.B., 2019. Findings of Phreatalona protzi (Hartwig, 1900) (Cladocera: Anomopoda: Chydoridae) in Russia. Invertebrate Zoology 16, 200210.CrossRefGoogle Scholar
Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys, Leiden.Google Scholar
Gasperini, L., Alvisi, F., Biasini, G., Bonatti, E., Longo, G., Pipan, M., Ravaioli, M., Serra, R., 2007. A possible impact crater for the 1908 Tunguska Event. Terra Nova 19, 245251.CrossRefGoogle Scholar
Gavshin, V.M., Sukhorukov, F.V., Bobrov, V.A., Melgunov, M.S., Miroshnichenko, L.V., Kovalev, S.I., Romashkin, P.A., Klerkx, J., 2004. Chemical composition of uranium tail storages at Kadji-Sai (southern shore of Issyk-Kul lake, Kyrgyzstan). Journal of Water, Air, & Soil Pollution 154, 7183.CrossRefGoogle Scholar
Gladysheva, O.G., 2020. The Tunguska Event. Ikarus 348, 113837. https://doi.org/10.1016/j.icarus.2020.113837Google Scholar
Glückler, R., Geng, R., Grimm, L., Baisheva, I., Herzschuh, U., Stoof-Leichsenring, K.R., Kruse, S., Andreev, A., Pestryakova, L., Dietze, E., 2022. Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies. Frontiers in Ecology and Evolution 10, 962906. https://doi.org/10.3389/fevo.2022.962906CrossRefGoogle Scholar
Grimm, E., 2004. Tilia Software 2.0.2. Illinois State Museum Research and Collection Center, Springfield.Google Scholar
Guiry, M.D., Guiry, G.M., 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (accessed October 17, 2023). https://www.algaebase.org.Google Scholar
Hammer, Ø., Harper, D.A.T., Raan, P.D., 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.Google Scholar
Hantemirov, R., Shiyatov, S., 2002. A continuous multi-millennial ring-width chronology in Yamal, northwestern Siberia. The Holocene 12, 717726.CrossRefGoogle Scholar
Harmsworth, R., 1968. The developmental history of Blelham Tarn (England) as shown by animal macrofossils, with special reference to the Cladocera. Ecological Monographs 38, 223241.CrossRefGoogle Scholar
Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S., et al., 2014. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communication 5, 4914. https://doi.org/10.1038/ncomms5914CrossRefGoogle ScholarPubMed
Heiri, O., Lotter, A.F., 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, 343350.CrossRefGoogle Scholar
Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427432.CrossRefGoogle Scholar
Hou, Q.L., Kolesnikov, E.M., Xie, L.W., Kolesnikova, N.V., Zhou, M.F. Sun, M., 2004. Platinum group element abundances in a peat layer associated with the Tunguska event, further evidence for a cosmic origin. Planetary and Space Science 52, 773773.CrossRefGoogle Scholar
Hou, Q.L., Ma, P.X., Kolesnikov, E.M., 1998. Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site. Planetary and Space Science 46, 163168.CrossRefGoogle Scholar
Jenniskens, P., 2019. Tunguska eyewitness accounts, injuries and casualties. Icarus 327, 418.CrossRefGoogle Scholar
Juggins, S., 2007. C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK.Google Scholar
Karachurina, S., Rudaya, N., Frolova, L., Kuzmina, O., Cao, X., Chepinoga, V., Stoof-Leichsenring, K., et al., 2023. Terrestrial vegetation and lake aquatic community diversity under climate change during the mid–late Holocene in the Altai Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology 623, 111623. https://doi.org/10.1016/j.palaeo.2023.111623CrossRefGoogle Scholar
Khrennikov, D.E., Titov, A.K., Ershov, A.E., Pariev, V.I., Karpov, S.V., 2020. On the possibility of through passage of asteroid bodies across the Earth's atmosphere. Monthly Notices of the Royal Astronomical Society 493, 13441351.CrossRefGoogle Scholar
Kirtman, B., Power, S.B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes, F.J., et al., 2013. Near-term climate change: projections and predictability. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp. 9531028.Google Scholar
Klemm, J., Herzschuh, U., Pestryakova, L.A., 2015. Vegetation, climate and lake changes over the last 7000 year at the boreal tree-line in north-central Siberia. Quaternary Science Reviews 147, 406421.Google Scholar
Kobe, F., Hoelzmann, P., Gliwa, J., Olschewski, P., Peskov, S.A., Shchetnikov, A.A., Danukalova, G.A., et al., 2022. Lateglacial-Holocene environments and human occupation in the Upper Lena region of Eastern Siberia derived from sedimentary and zooarchaeological data from Lake Ochaul. Quaternary International 623, 139158.CrossRefGoogle Scholar
Kolesnikov, E.M., Boettger, T., Kolesnikova, N.V., 1999. Finding of probable Tunguska Cosmic Body material: isotopic anomalies of carbon and hydrogen in peat. Planetary and Space Science 47, 905916.CrossRefGoogle Scholar
Kolesnikov, E.M., Longo, G., Boettger, T., Kolesnikova, N.V., Gioacchini, P., Forlani, L., Giampieri, R., Serra, R., 2003. Isotopic-geochemical study of nitrogen and carbon in peat from the Tunguska Cosmic Body explosion site. Icarus 161, 235243.CrossRefGoogle Scholar
Kol'tsova, V.G., 1981. The history of central taiga larch forests of southern Evenkia in the Holocene. In:Paleobotanicheskie Issledovaniya v Lesakh Severnoi Azii [Paleobotanical Investigations in Forest of Northern Asia]. Nauka, Novosibirsk, pp. 4462.Google Scholar
Korhola, A., Rautio, M., 2001. Cladocera and other branchiopod crustaceans. In: Tracking Environmental Change Using Lake Sediments. Vol. 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, pp. 125165.Google Scholar
Koshkarov, A.D., Koshkarova, V.L., 2018. Multi-century dynamics morpho-structure of forest ecosystems in Central Evenkia in a context of global climate change. [In Russian.] Yevrasiiskii Soyuz Uchyonykh [Eurasian Union of Scientists] 54, 48.Google Scholar
Koshkarova, V.I., Koshkarov, A.D., 2005. Paleoecology and dynamics of forest ecosystems of Central Evenkia during the past 2400 years. Russian Journal of Ecology 36, 17.CrossRefGoogle Scholar
Kotov, A.A., Sinev, A.Y., Glagolev, S.M., Smirnov, N.N., 2010. Water fleas (Cladocera). In: Key Book for Zooplankton and Zoobenthos of Fresh Waters of European Russia. Vol. 1. [In Russian.] KMK Scientific Press, Moscow pp. 151276.Google Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. Teil 1: Naviculaceae. Süsswasserflora von Mitteleuropa. Band 2/1. VEB Gustav Fischer Verlag, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Süsswasserflora von Mitteleuropa. Band 2/2. VEB Gustav Fischer Verlag, Jena.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991. Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiaceae. Süsswasserflora von Mitteleuropa. Band 2/3. VEB Gustav Fischer Verlag, Stuttgart, Jena.Google Scholar
Krishnaswami, S., Lal, D., 1978. Radionuclide limnochronology. In: Lerman, A. (Ed.), Lakes: Chemistry, Geology, Physics. Springer, Berlin, pp. 153177.CrossRefGoogle Scholar
Krivonogov, S.K., Takahara, H., Yamamuro, M., Preis, Y.I., Khazina, I.V., Khazin, L.B., Kuzmin, Y.V., Safonova, I.Y., Ignatova, N.V., 2012. Regional to local environmental changes in southern Western Siberia: evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeography, Palaeoclimatology, Palaeoecology 331–332, 177193.CrossRefGoogle Scholar
Krivonogov, S.K., Zhdanova, A.N., Solotchin, P.A., Kazansky, A.Y., Chegis, V.V., Liu, Z., Song, M., et al., 2023. The Holocene environmental changes revealed from the sediments of the Yarkov sub-basin of Lake Chany, south-western Siberia. Geoscience Frontiers 14, 101518. https://doi.org/10.1016/j.gsf.2022.101518CrossRefGoogle Scholar
Kupriyanova, L.A., Alyoshina, L.A., 1978. Pollen and Spores of Plants from the Flora of European Part of USSR. Academy of Sciences USSR, Nauka, Leningrad.Google Scholar
Kutafyeva, T.K., 1974. The History of Forest Vegetation in the Interfluve of Lower Tunguska and Podkamennaya Tunguska in Holocene. [In Russian.] PhD thesis, Krasnoyarsk State University, Krasnoyarsk, USSR.Google Scholar
Li, H.-C., Chang, Y., Berelson, W.M., Zhao, M., Misra, S., Shen, T.-T., 2022. Interannual variations of D14CTOC and elemental contents in the laminated sediments of the Santa Barbara Basin during the past 200 years. Frontiers in Marine Science 9, 823793. https://doi.org/10.3389/fmars.2022.823793Google Scholar
Livingstone, D.M., Lotter, A.F., Walker, I.R., 1999. The decrease in summer water temperature with altitude in Swiss alpine lakes: a comparison with air lapse rates. Arctic Antarctic and Alpine Research 31, 341352.CrossRefGoogle Scholar
Longo, G., 2007. The Tunguska event. In: Bobrowsky, P.T., Rickman, H. (Eds.), Comet/Asteroid Impacts and Human Society, An Interdisciplinary Approach. Springer-Verlag, Berlin, pp. 303330.CrossRefGoogle Scholar
Longo, G., Serra, R., Cecchini, S., Galli, M., 1994. Search for microremnants of the Tunguska Cosmic Body. Planetary and Space Science 42, 163177.CrossRefGoogle Scholar
Lotter, A.F., Juggins, S., 1991. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA Subcommission for the Study of the Holocene Working Group on Data-Handling Methods Newsletter 6, 46.Google Scholar
Mackay, A.W., Bezrukova, E.V., Leng, M.J., Meaney, M., Nunes, A., Piotrowska, N., Self, A., et al., 2012. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quaternary Science Reviews 41, 119131CrossRefGoogle Scholar
Melgunov, M.S., Gavshin, V.M., Sukhorukov, F.V., Kalugin, I.A., Bobrov, V.A., Klerkx, J., 2003. Anomalies of radioactivity at the southern coast of lake Issyk-Kul (Kyrgyzstan). Khimiya v Interesakh Ustoichivogo Razvitiya [Chemistry for Sustainable Development] 11, 869880.Google Scholar
Meyer, H., Chapligin, B., Hoff, U., Nazarova, L., Diekmann, B., 2015. Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts-Lake, Central Kamchatka, Russia. Global and Planetary Change 134, 118128.CrossRefGoogle Scholar
Moller Pillot, H.K.M., 2009. Chironomidae larvae: Biology and Ecology of the Chironomini. KNNV Publishing, Zeist, The Netherlands.CrossRefGoogle Scholar
Moller Pillot, H.K.M., 2013. Chironomidae Larvae: Biology and Ecology of the Aquatic Orthocladiinae. KNNV Publishing, Zeist, The Netherlands.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., Collison, M.E., 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford.Google Scholar
Morrison, D., 2018. Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact. NASA/Technical Memorandum (NASA/TM--220174), pp. 115.Google Scholar
Müller, S., Tarasov, P.E., Andreev, A.A., Diekmann, B., 2009. Late glacial to Holocene environments in the present-day coldest region of the Northern Hemisphere inferred from a pollen record of Lake Billyakh, Verkhoyansk Mts, NE Siberia. Climate of the Past 5, 7384.CrossRefGoogle Scholar
Naurzbaev, M.M., Vaganov, E.A., 2000. Variation of early summer and annual temperatures in east Taymyr and Putoran (Siberia) over the last two millennia inferred from tree rings. Journal of Geophysical Research 105, 73177326.CrossRefGoogle Scholar
Naurzbaev, M.M., Vaganov, E.A., Sidorova, O.V., Schweingruber, F.H., 2002. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. The Holocene 12, 727736.CrossRefGoogle Scholar
Nazarova, L., Lüpfert, H., Subetto, D., Pestryakova, L., Diekmann, B., 2013. Holocene climate conditions in central Yakutia (Eastern Siberia) inferred from sediment composition and fossil chironomids of Lake Temje. Quaternary International 290–291, 264274.CrossRefGoogle Scholar
Nazarova, L., Pestryakova, L.A., Ushinckaja, L.A., Hubberten, H.-W., 2008. Chironomids (Diptera: Chironomidae) of Central Yakutian lakes and their indicative potential for palaeoclimatic investigations. Contemporary Problems of Ecology 1, 335345.CrossRefGoogle Scholar
Nazarova, L., Self, A.E., Brooks, S.J., Hardenbroek, M., Herzschuh, U., Diekmann, B., 2015. Northern Russian chironomid-based modern summer temperature data set and inference models. Global and Planetary Change 134, 1025.CrossRefGoogle Scholar
Nazarova, L.B., Self, А.E., Brooks, S.J., Solovieva, N., Syrykh, L.S., Dauvalter, V.А., 2017. Chironomid fauna of the lakes from the Pechora River basin (East of European part of Russian Arctic): ecology and reconstruction of recent ecological changes in the region. Contemporary Problems of Ecology 4, 350362.CrossRefGoogle Scholar
Nazarova, L., Syrykh, L., Grekov, I., Sapelko, T., Krasheninnikov, A.B., Solovieva, N., 2023. Chironomid-based modern summer temperature data set and inference model for the northwest European part of Russia. Water 15, 976.CrossRefGoogle Scholar
Nazarova, L., Syrykh, L.S., Mayfield, R.J., Frolova, L.A., Ibragimova, A., Grekov, I.M., Subetto, D.A., 2020. Palaeoecological and palaeoclimatic conditions in Karelian Isthmus (north-western Russia) during the Holocene: multi-proxy analysis of sediments from the Lake Medvedevskoe. Quaternary Research 95, 6583.CrossRefGoogle Scholar
New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21, 125.CrossRefGoogle Scholar
Palagushkina, O., Wetterich, S., Schirrmeister, L., Nazarova, L.B., 2017. Modern and fossil diatom assemblages from Bol'shoy Lyakhovsky Island (New Siberian Archipelago, Arctic Siberia). Contemporary Problems of Ecology 10, 380394.CrossRefGoogle Scholar
Patrick, R.M., Reimer, C.W., 1966. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 1. Monographs of the Academy of Natural Sciences of Philadelphia 13.CrossRefGoogle Scholar
Plikk, A., Engels, S., Luoto, T., Nazarova, L., Salonen, J. S., Helmens, K.F., 2019. Chironomid-based temperature reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, northeast Finland. Journal of Paleolimnology 61, 355371.CrossRefGoogle Scholar
Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., et al. (Eds.), 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York.Google Scholar
Prokopenko, A.A., Khursevich, G.K., Bezrukova, E.V., Kuzmin, M.I., Boes, X., Williams, D.F., Fedenya, S.A., Kulagina, N.V., Letunova, P.P., Abzaeva, A.A., 2007. Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quaternary Research 68, 217.CrossRefGoogle Scholar
Quinlan, R., Smol, J.P., 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26, 327342.CrossRefGoogle Scholar
R Development Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere radiocarbon calibration curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Renssen, H., Seppä, H., Heiri, O., Roche, D.M., Goosse, H., Fichefet, T., 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 410413.CrossRefGoogle Scholar
Rogozin, D.Y., Darin, A.V., Kalugin, I.A., Melgunov, M.C., Meydus, A.V., Degermendzhi, A.G., 2017. Sedimentation rate in Lake Cheko (Evenkia, Siberia): new evidence to the problem of 1908 Tunguska Event. Doklady Earth Sciences 476, 12261228.CrossRefGoogle Scholar
Rogozin, D.Y., Krylov, P.S., Dautov, A.N., Darin, A.V., Kalugin, I.A., Meydus, A.V., Degermendzhy, A.G., 2023. Morphology of lakes of the Central Tunguska Plateau (Krasnoyarsk krai, Evenkia): new data on the problem of the Tunguska Event of 1908. Doklady Earth Sciences 510, 307311.CrossRefGoogle Scholar
Rudaya, N., Krivonogov, S., Słowinski, M., Cao, X., Zhilich, S., 2020. Postglacial history of the Steppe Altai: climate, fire and plant diversity. Quaternary Science Reviews 249, 106616. https://doi.org/10.1016/j.quascirev.2020.106616Google Scholar
Rudaya, N., Nazarova, L., Nourgaliev, D., Palagushkina, O., Papin, D., Frolova, L., 2012. Middle-Late Holocene environmental history of Kulunda, southwestern Siberia: vegetation, climate and humans. Quaternary Science Reviews 48, 3242.CrossRefGoogle Scholar
Rudaya, N., Nazarova, L., Novenko, E., Andreev, A., Babich, V., Kalugin, I., Daryin, A., Li, H.-Ch., Shilov, P., 2016. Quantitative reconstructions of mid-late Holocene climate and vegetation in the north-eastern Altai Mountains recorded in Lake Teletskoye. Global and Planetary Change 141, 1224.CrossRefGoogle Scholar
Rudoy, A.N., Lysenkova, Z.V., Rudski, V.V., Shishin, M. Yu., 2000. Ukok. [In Russian.] Altai University Press, Barnaul.Google Scholar
Self, A.E., Jones, V.J., Brooks, S.J., 2015. Late Holocene environmental change in arctic western Siberia. The Holocene 25, 150165.CrossRefGoogle Scholar
Shumilova, L.V., 1962. Botanical Geography of Siberia. [In Russian.]Tomsk State University, Tomsk.Google Scholar
Smirnov, N.N., 1971. Chydoridae (Chydoridae fauny mira). Fauna of the U.S.S.R. Vol. 1. Nauka, Leningrad.Google Scholar
Solomina, O.N., 1999. Gornoe Oledenenie Severnoi Evrasii v Golotsene [Mountain Glaciation of Northern Eurasia in the Holocene]. Nauchnyi mir, Moscow.Google Scholar
Sorrel, P., Jacq, K., Van Exem, A., Escarguel, G., Dietred, B., Debret, M., McGowan, S., Ducept, J., Gauthier, E., Oberhänsli, H., 2021. Evidence for centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a high-altitude lake system from central Tian Shan (Kyrgyzstan). Quaternary Science Reviews 252, 106748. https://doi.org/10.1016/j.quascirev.2020.106748CrossRefGoogle Scholar
Stenina, A.S., 2009. Diatom Algae (Bacillariophyta) in the Lakes of the East of Bolshezemel'skaya Tundra. [In Russian.] Institute of Biology of Komi Scientific Center, Syktyvkar.Google Scholar
Stine, S., 1998. Medieval climatic anomaly in the Americas. In: Issar, A.S., Brown, N. (Eds.), Water, Environment and Society in Times of Climatic Change. Kluwer, Dordrecht, pp. 4367.CrossRefGoogle Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Subetto, D.A., Nazarova, L.B., Pestryakova, L.A., Syrykh, L.S., Andronikov, A.V., Biskaborn, B., Diekmann, B., Kuznetsov, D.D., Sapelko, T.V., Grekov, I.М., 2017. Palaeolimnological studies in Russian Northern Eurasia: a review. Contemporary Problems of Ecology 4, 327335.CrossRefGoogle Scholar
Syrykh, L.S., Nazarova, L.B., Herzschuh, U., Subetto, D.A., Grekov, I.M., 2017. Reconstruction of palaeoecological and palaeoclimatic conditions of the Holocene in the south of Taimyr according to the analysis of lake sediments. Contemporary Problems of Ecology 4, 363369.CrossRefGoogle Scholar
Szeroczyńska, K., Sarmaja-Korjonen, K., 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Advances in Ecological Research 18, 271317.CrossRefGoogle Scholar
ter Braak, C.J.F., Šmilauer, P., 2002. CANOCO for Windows: Software for Community Ordination Version 4.5. Microcomputer Power, Ithaca, New York.Google Scholar
Trifonova, I.S., 1990. Ecology and Succession of Lacustrine Plankton. [In Russian.] Leningrad, Nauka.Google Scholar
Vasiliev, N.V., Lvov, Y.A., 2003. Program of scientific research in Tungusski Natural Reserve 2000–2003. In: Vasiliev, N.V., Plekhanov, G.F., Logunova, L.N., Boyarko, E.Y., Ivanova, G.M., Muldiyarov, E.Y. (Eds.), Tungusski Natural Reserve. Proceedings 1. [In Russian.] Tomsk State University, Tomsk, pp. 1433.Google Scholar
Vasiliev, N.V., Lvov, Y.A., Plekhanov, G.F., Logunova, L.N., Muldiyarov, E.Y., Bibikova, V.V., Volkov, A.E., et al., 2003. Tungusski Natural Reserve (basic data outline). In: Vasiliev, N.V., Plekhanov, G.F., Logunova, L.N., Boyarko, E.Y., Ivanova, G.M., Muldiyarov, E.Y. (Eds.), Tungusski Natural Reserve. Proceedings 1. [In Russian.] Tomsk State University, Tomsk, pp. 3390.Google Scholar
Vegas-Vilarrúbia, T., Corella, J.P., Pérez-Zanón, N., Buchaca, T., Trapote, M.C., López, P., Sigró, J., Valentí Rull, V., 2018. Historical shifts in oxygenation regime as recorded in the laminated sediments of lake Montcortès (Central Pyrenees) support hypoxia as a continental-scale phenomenon. Science of The Total Environment 612, 15771592.CrossRefGoogle ScholarPubMed
Walker, M.J.C., 2006. Quaternary Dating Methods. John Wiley & Sons, Chichester, England.Google Scholar
Watchorn, M.A., Hamilton, P.B., Anderson, T.W., Roe, H.M., Patterson, R.T., 2008. Diatoms and pollen as indicators of water quality and land-use change: a case study from the Oak Ridges Moraine, Southern Ontario, Canada. Journal of Paleolimnology 39, 491509.CrossRefGoogle Scholar
Wetterich, S., Rudaya, N., Nazarova, L., Syrykh, L., Pavlova, M., Palagushkina, O., Kizyakov, A., et al., 2021. Paleo-ecology of the Yedoma Ice Complex on Sobo-Sise Island (Eastern Lena Delta, North-east Siberian Arctic). Frontiers in Earth Science 9, 681511. https://doi.org/10.3389/feart.2021.681511CrossRefGoogle Scholar
Wetterich, S., Schirrmeister, L., Nazarova, L., 2018. Holocene thermokarst and pingo development in the Kolyma Lowland 1 (NE Siberia). Permafrost and Periglacial Processes 29, 182198.CrossRefGoogle Scholar
Whipple, F.J.W., 1934. On phenomena related to the great Siberian meteor. Quarterly Journal of the Royal Meteorological Society 60, 505522.CrossRefGoogle Scholar
Wiederholm, T., 1983. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: Larvae. Entomologica Scandinavica 19.Google Scholar
Wirth, S.B., Gilli, A., Niemann, H., Dahl, T.W., Ravasi, D., Sax, N., Hamann, Y., et al., 2013. Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: the example of meromictic Lake Cadagno (Swiss Alps). Geochimica et Cosmochimica Acta 120, 220238.CrossRefGoogle Scholar
Zeeberg, J., Forman, S.L., Polyak, L., 2003. Glacier extent in a Novaya Zemlya fjord during the ‘Little Ice Age’ inferred from glaciomarine sediment records. Polar Research 22, 385394.Google Scholar
Zhen, Z.L., Li, W.B., Xu, L.S., Wang, C.L., Zhao, L.T., 2020. Characteristics of palaeosalinity and palaeoredox records in sediment from Dali Lake: climate change in North China from 0 to 2100 cal BP. Quaternary Geochronology 60, 101104.CrossRefGoogle Scholar
Zhilich, S., Rudaya, N., Krivonogov, S., Nazarova, L., Pozdnyakov, D., 2017. Environmental dynamics of the Baraba forest-steppe over the last 8000 years and their impact on the types of economic life of the population. Quaternary Science Reviews 163, 152161.CrossRefGoogle Scholar