Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T13:56:14.153Z Has data issue: false hasContentIssue false

Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition

Published online by Cambridge University Press:  20 January 2017

Daniel Nývlt*
Affiliation:
Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia Czech Geological Survey, Brno branch, Leitnerova 22, 658 69 Brno, Czechia
Régis Braucher
Affiliation:
Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l'Arbois, BP80, 13545 Aix-en-Provence, France
Zbyněk Engel
Affiliation:
Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha, Czechia Czech Geological Survey, Klárov 3, 118 21 Praha, Czechia
Bedřich Mlčoch
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Praha, Czechia
ASTER Team
Affiliation:
Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l'Arbois, BP80, 13545 Aix-en-Provence, France
*
*Corresponding author at: Department of Geography, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czechia. Fax: + 420 549 491 487. E-mail address:[email protected] (D. Nývlt).

Abstract

The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 ASTER Team: Maurice Arnold, Georges Aumaître, Didier Bourlès, Karim Keddadouche.

References

Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S., and Mosola, A.B. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quaternary Science Reviews 21, (2002). 4970.Google Scholar
Applegate, P.J., Urban, N.M., Keller, K., Lowell, T.V., Laabs, B.J.C., Kelly, M.A., and Alley, R.B. Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quaternary Research 77, (2012). 293304.Google Scholar
Arnold, M., Merchel, S., Bourlès, D.L., Braucher, R., Benedetti, L., Finkel, R.C., Aumaître, G., Gottdang, A., and Klein, M. The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nuclear Instruments and Methods in Physics Research B 268, (2010). 19541959.Google Scholar
Balco, G., Schaefer, J.M. LARISSA group Exposure-age record of Holocene ice sheet and ice shelf change in the northeast Antarctic Peninsula. Quaternary Science Reviews 59, (2013). 101111.Google Scholar
Barbeau, D.L., Davis, J.T., Murray, K.E., Valencia, V., Gehrels, G.E., Zahid, K.M., and Gombosi, D.J. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Science 22, (2010). 6578.CrossRefGoogle Scholar
Bentley, M.J. Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews 18, (1999). 15691595.Google Scholar
Björck, S., Hjort, C., Ingólfsson, Ó., and Skog, G. Radiocarbon dates from the Antarctic Peninsula Region—Problems and potential. Quaternary Proceedings 1, (1991). 5565.Google Scholar
Brachfeld, S.A., Banarjee, S.K., Guyodo, Y., and Acton, G.D. A 13 200 year history of century to millennial-scale palaeoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters 194, (2002). 311326.Google Scholar
Brachfeld, S., Domack, E., Kissel, C., Laj, C., Leventer, A., Ishman, S., Gilbert, R., Camerlenghi, A., and Eglinton, L.B. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating. Geology 31, (2003). 749752.Google Scholar
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D.L. Production of cosmogenic radionuclides at great depth: a multi element approach. Earth and Planetary Science Letters 309, (2011). 19.Google Scholar
Briner, J.P., Miller, G.H., Davis, P.T., Bierman, P.R., and Caffee, M. Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews 22, (2003). 437444.Google Scholar
Camerlenghi, A., Domack, E., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A., Brachfeld, S., and Drake, A. Glacial morphology and post-glacial contourites in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Marine Geophysical Research 22, (2001). 417443.Google Scholar
Carrivick, J.L., Davies, B.J., Glasser, N.F., Nývlt, D., and Hambrey, M.J. Late-Holocene changes in character and behaviour of land-terminating glaciers on James Ross Island, Antarctica. Journal of Glaciology 58, 212 (2012). 11761190.Google Scholar
Černá, B., and Engel, Z. Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surface Processes and Landforms 36, (2011). 170179.Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D. The determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, (2010). 192199.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. The Last Glacial Maximum. Science 325, (2009). 710714.CrossRefGoogle ScholarPubMed
Cook, A.J., and Vaughan, D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere 4, (2010). 7798.CrossRefGoogle Scholar
Cooper, A.P.R. Historical observations of Prince Gustav Ice Shelf. Polar Record 33, (1997). 285294.Google Scholar
Czech Geological Survey (2009). James Ross Island - Northern Part. Topographic map 1: 25 000 CGS, Praha Google Scholar
Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L., and Glasser, N.F. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era. Quaternary Science Reviews 31, (2012). 3066.CrossRefGoogle Scholar
Davies, B.J., Glasser, N.F., Carrivick, J.L., Hambrey, M.J., Smellie, J.L., and Nývlt, D. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. Hambrey, M.J., Barker, P.F., Barrett, P.J., Bownam, V., Davies, B., Smellie, J.L., and Tranter, M. Antarctic Palaeoenvironments and Earth-Surface Processes. Geological Society of London, Special Publication 381, (2013). 353395.Google Scholar
Day, M.J., and Goudie, A.S. Field assessment of rock hardness using the Schmidt test hammer. British Geomorphology Research Group Technical Bulletin 18, (1977). 1929.Google Scholar
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C. ODP Leg 178 Scientific Party Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene 11, (2001). 19.Google Scholar
Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J., Gilbert, R., and Prentice, M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, (2005). 681685.Google Scholar
Engel, Z., Nývlt, D., and Láska, K. Ice thickness, areal and volumetric changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic Peninsula) in 1979–2006. Journal of Glaciology 58, 211 (2012). 904914.Google Scholar
Evans, J., Pudsey, C.J., ÓCofaigh, C., Morris, P., and Domack, E. Late Quaternary glacial history, flow dynamics and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet. Quaternary Science Reviews 24, (2005). 741774.Google Scholar
Fink, D., McKelvey, B., Hambrey, M.J., Fabel, D., and Brown, R. Pleistocene deglaciation chronology of the Amery Oasis and Radok Lake, northern Prince Charles Mountains, Antarctica. Earth and Planetary Science Letters 243, (2006). 229243.Google Scholar
Goudie, A.S. The Schmidt Hammer in geomorphological research. Progress in Physical Geography 30, (2006). 703718.Google Scholar
Heroy, D.C., and Anderson, J.B. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quaternary Science Reviews 26, (2007). 32863297.CrossRefGoogle Scholar
Hillenbrand, C.-D., Larter, R.D., Dowdeswell, J.A., Ehrmann, W., Ó Cofaigh, C., Benetti, S., Graham, A.G.C., and Grobe, H. The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: clues to West Antarctic glacial history during the Late Quaternary. Quaternary Science Reviews 29, (2010). 27412763.Google Scholar
Hjort, C., Ingólfsson, Ó., Möller, P., and Lirio, J.M. Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. Journal of Quaternary Science 12, (1997). 259273.Google Scholar
Hubbard, B., and Glasser, N. Field Techniques in Glaciology and Glacial Geomorphology. (2005). Wiley, Chichester. [400 pp.]Google Scholar
Ingólfsson, Ó., Hjort, C., Björck, S., and Smith, R.I.L. Late Pleistocene and Holocene glacial history of James Ross Island, Antarctic Peninsula. Boreas 21, (1992). 209222.Google Scholar
Johnson, J.S., Smellie, J.L., Nelson, A.E., and Stuart, F.M. History of the Antarctic Peninsula Ice Sheet since the early Pliocene—Evidence from cosmogenic dating of Pliocene lavas on James Ross Island, Antarctica. Global and Planetary Change 69, (2009). 205213.CrossRefGoogle Scholar
Johnson, J.S., Bentley, M.J., Roberts, S.J., Binnie, S.A., and Freeman, S.P.H.T. Holocene deglacial history of the northeast Antarctic Peninsula — A review and new chronological constraints. Quaternary Science Reviews 30, (2011). 37913802.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A. A new value for the half-life of 10Be by heavy ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, (2010). 187191.Google Scholar
Leat, P.T., Scarrow, J.H., and Millar, I.L. On the Antarctic Peninsula batholith. Geological Magazine 132, (1995). 399412.Google Scholar
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J., and Fanning, P.C. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice-sheet thickness since the Last Glacial Maximum. Geology 35, (2007). 551554.CrossRefGoogle Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D., DeConto, R., Fink, D., Zwartz, D., and Gore, D. Retreat of the East Antarctic ice sheet during the last glacial termination. Nature Geoscience 4, (2011). 195202.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern Hemisphere Calibration, 0–11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.Google Scholar
Moon, B.P. Refinement of a technique for determining rock mass strength for geomorphological purposes. Earth Surface Processes and Landforms 9, (1984). 189193.Google Scholar
Mulvaney, R., Abram, N.J., Hindmarsh, R.C.A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L.C., Alemany, O., and Foord, S. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489, (2012). 141144.Google Scholar
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M., and Elster, J. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarctic Science 25, (2013). 358372.Google Scholar
Nývlt, D., Kopačková, V., Láska, K., and Engel, Z. Recent changes detected on two glaciers at the northern part of James Ross Island, Antarctica. Geophysical Research Abstracts 12, (2010). EGU2010EGU8102.Google Scholar
Nývlt, D., Košler, J., Mlčoch, B., Mixa, P., Lisá, L., Bubík, M., and Hendriks, B.W.H. The Mendel Formation: evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 299, (2011). 363384.CrossRefGoogle Scholar
Phillips, W.M., Hall, A.M., Mottram, R., Fifield, L.K., and Sugden, D.E. Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: timescales for the development of a classic landscape of selective linear glacial erosion. Geomorphology 73, (2006). 222245.Google Scholar
Pudsey, C.J., and Evans, J.E. First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology 29, (2001). 787790.2.0.CO;2>CrossRefGoogle Scholar
Pudsey, C.J., Murray, J.W., Appleby, P., and Evans, J. Ice shelf history from petrographic and foraminiferal evidence, Northeast Antarctic Peninsula. Quaternary Science Reviews 25, (2006). 23572379.Google Scholar
Putkonen, J., and Swanson, T. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, (2003). 255261.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S. Bronk, Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Intcal09 and Marine09 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Rinterknecht, V.R., Clark, P.U., Raisbeck, G.M., Yiou, F., Bitinas, A., Brook, E.J., Marks, L., Zelčs, V., Lunkka, J.-P., Pavlovskaya, I.E., Piotrowski, J.A., and Raukas, A. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311, (2006). 14491452.Google Scholar
Roberts, S.J., Hodgson, D.A., Sterken, M., Whitehouse, P.L., Verleyen, E., Vyverman, W., Sabbe, K., Balbo, A., Bentley, M.J., and Moreton, S.G. Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quaternary Science Reviews 30, (2011). 36033617.Google Scholar
Rosenheim, B.E., Day, M.B., Domack, E., Schrum, H., Benthien, A., and Hayes, J.M. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry Geophysics Geosystems 9, (2008). Q04005 http://dx.doi.org/10.1029/2007GC001816Google Scholar
Simms, A.R., Lambeck, K., Purcell, A., Anderson, J.B., and Rodriguez, A.B. Sea-level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting history of the Laurentide Ice Sheet. Quaternary Science Reviews 26, (2007). 920940.Google Scholar
Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Röthlisberger, R., and Selmo, E. An oceanic cold reversal during the last deglaciation. Science 293, (2001). 20742077.Google Scholar
Sterken, M., Roberts, S.J., Hodgson, D.A., Vyverman, W., Balbo, A.L., Sabbe, K., Moreton, S.G., and Verleyen, E. Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula. Quaternary Science Reviews 31, (2012). 93111.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research - Solid Earth 105, (2000). 2375323759.CrossRefGoogle Scholar
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.W., Sass, L.C. III, Cowdery, S.G., and Siddoway, C. Holocene Deglaciation of Marie Byrd Land, West Antarctica. Science 299, (2003). 99102.Google Scholar
Storey, B.C., Fink, D., Hood, D., Joy, K., Shulmeister, J., Riger-Kusk, M., and Stevens, M.I. Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarctic Science 22, (2010). 603618.CrossRefGoogle Scholar
Ward, G.K., and Wilson, S.R. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20, (1978). 1931.Google Scholar
Weaver, A.J., Saenko, O.A., Clark, P.U., and Mitrovica, J.X. Meltwater Pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, (2003). 17091713.Google Scholar
White, D.A., Fink, D., and Gore, D.B. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology 39, (2011). 2326.Google Scholar
Žák, J., Soejono, I., Janoušek, V., and Venera, Z. Magnetic fabric and tectonic setting of the Early to Middle Jurassic felsic dykes at Pitt Point and Mount Reece, eastern Graham Land, Antarctica. Antarctic Science 24, (2012). 4558.Google Scholar
Zale, R., and Karlén, W. Lake sediment cores from the Antarctic Peninsula and surrounding islands. Geografiska Annaler 71, A (1989). 211220.Google Scholar
Supplementary material: File

Nývlt et al. supplementary material

Supplementary Material

Download Nývlt et al. supplementary material(File)
File 30.7 KB