Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:47:02.876Z Has data issue: false hasContentIssue false

Timing of the late-glacial climate reversal in the Southern Hemisphere using high-resolution radiocarbon chronology for Kaipo Bog, New Zealand

Published online by Cambridge University Press:  20 January 2017

Irka Hajdas*
Affiliation:
PSI c/o ETH/PSI AMS 14C Laboratory Hönggerberg, HPK H27, 8093 Zurich, Switzerland
David J. Lowe
Affiliation:
Department of Earth Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Rewi M. Newnham
Affiliation:
School of Geography, University of Plymouth, Plymouth PL4 8AA, UK
Georges Bonani
Affiliation:
ETH Institut für Teilchenphysik, ETH/PSI AMS 14C Laboratory Hönggerberg, HPK H30, 8093 Zurich, Switzerland
*
*Corresponding author. Fax: +41 1 633 1067.E-mail address:[email protected](I. Hajdas).

Abstract

The pattern of climate change in the Southern Hemisphere during the Younger Dryas (YD) chronozone provides essential constraint on mechanisms of abrupt climate change only if accurate, high-precision chronologies are obtained. A climate reversal reported previously at Kaipo bog, New Zealand, had been dated between 13,600 and 12,600 cal yr B.P. and appeared to asynchronously overlap the YD chron, but the chronology, based on conventionally radiocarbon-dated bulk sediment samples, left the precise timing questionable. We report a new high-resolution AMS 14C chronology for the Kaipo record that confirms the original chronology and provides further evidence for a mid-latitude Southern Ocean cooling event dated between 13,800 and 12,400 cal yr B.P. (2σ range), roughly equivalent to the Antarctic Cold Reversal.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, M.S., Bernasconi, S.M., McKenzie, J.A., Rohl, U., (2003). Southern Ocean deglacial record supports global Younger Dryas. Earth and Planetary Science Letters 216, 515524.CrossRefGoogle Scholar
Blunier, T., Brook, E.J., (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109112.Google Scholar
Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., Johnsen, S.J., (1998). Asynchrony of Antarctic and Greenland climate change during the Last Glacial period. Nature 394, 739743.Google Scholar
Bonani, G., Beer, J., Hofmann, H., Synal, H.A., Suter, M., Wölfli, W., Pfleiderer, C., Junghans, C., Münnich, K.O., (1987). Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B29, 8790.CrossRefGoogle Scholar
Broecker, W.S., (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanography 13, 119121.Google Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon calibration program OxCal. Radiocarbon 43, 355363.CrossRefGoogle Scholar
Cane, M.A., Clement, A.C., (1999). A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and millennial timescales: global impacts. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millennial Time Scales American Geophysical Union, Washington DC.373383.Google Scholar
Denton, G., Hendy, C.H., (1994). Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264, 14341437.Google Scholar
Froggatt, P.C., Lowe, D.J., (1990). A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age. New Zealand Journal of Geology and Geophysics 33, 89109.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P.I., Ariztegui, D., (2003). Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, 7078.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Thut, J., Leone, G., Pfenninger, R., Maden, C., (2004). A report on sample preparation at the ETH/PSI AMS facility in Zurich.. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223224., 267"""271.Google Scholar
Hogg, A.G., Lowe, D.J., Hendy, C.H., (1987). University of Waikato radiocarbon dates I. Radiocarbon 29, 263301.Google Scholar
Kromer, B., Friedrich, M., Hughen, K.A., Kaiser, F., Remmele, S., Schaub, M., Talamo, S., (2004). Late glacial 14C ages from a floating, 1382-ring pine chronology. Radiocarbon 46, 12031209.CrossRefGoogle Scholar
Lowe, D.J., Hogg, A.G., (1986). Tephrostratigraphy and chronology of the Kaipo Lagoon, an 11,500-year-old montane peat bog in Urewera National Park, New Zealand. Journal of the Royal Society of New Zealand 16, 2541.Google Scholar
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schluchter, C., Marchant, D.R., Denton, G.H., (1995). Interhemispheric correlation of Late Pleistocene glacial events. Science 269, 15411549.CrossRefGoogle ScholarPubMed
Lowe, D.J., Newnham, R.M., Ward, C.M., (1999). Stratigraphy and chronology of a 15 ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern North Island, New Zealand. New Zealand Journal of Geology and Geophysics 42, 565579.CrossRefGoogle Scholar
McCormac, F.G., Reimer, P.J., Hogg, A.G., Higham, T.F.G., Baillie, M.G.L., Palmer, J., Stuiver, M., (2002). Calibration of the radiocarbon time scale for the Southern Hemisphere: AD 1850–950. Radiocarbon 44, 641651.CrossRefGoogle Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 10871092.CrossRefGoogle Scholar
McGlone, M.S., Turney, C.S.M., Wilmshurst, J.M., (2004). Late-glacial and Holocene vegetation and climatic history of the Cass Basin, central South Island, New Zealand. Quaternary Research 62, 267279.Google Scholar
Morgan, V., Delmotte, M., van Ommen, T., Jouzel, J., Chappellaz, J., Woon, S., Masson-Delmotte, V., Raynaud, D., (2002). Relative timing of deglacial climate events in Antarctica and Greenland. Science 297, 18621864.CrossRefGoogle ScholarPubMed
Morigi, C., Capotondi, L., Giglio, F., Langone, L., Brilli, M., Turi, B., Ravaioli, M., (2003). A possible record of the Younger Dryas event in deep-sea sediments of the Southern Ocean (Pacific sector). Palaeogeography, Palaeoclimatology, Palaeoecology 198, 265278.CrossRefGoogle Scholar
Newnham, R.M., Lowe, D.J., (2000). Fine-resolution pollen record of late-glacial climate reversal from New Zealand. Geology 28, 759762.2.0.CO;2>CrossRefGoogle Scholar
Newnham, R.M., Lowe, D.J., Wigley, G.N.A., (1995). Late Holocene palynology and palaeovegetation of tephra-bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand. Journal of the Royal Society of New Zealand 25, 283300.CrossRefGoogle Scholar
Newnham, R.M., Eden, D.N., Lowe, D.J., Hendy, C.H., (2003). Rerewhakaaitu Tephra, a land–sea marker for the Last Termination in New Zealand, with implications for global climate change. Quaternary Science Reviews 22, 289308.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Shane, P.A.R., Smith, V.C., Lowe, D.J., Nairn, I.A., (2003). Re-identification of c. 15 700 cal yr BP tephra bed at Kaipo Bog, eastern North Island: implications for dispersal of Rotorua and Puketarata tephra beds. New Zealand Journal of Geology and Geophysics 46, 591596.Google Scholar
Singer, C., Shulmeister, J., McLea, B., (1998). Evidence against a significant Younger Dryas cooling event in New Zealand. Science 281, 812814.Google Scholar
Stuiver, M., Polach, H.A., (1977). Reporting of 14C data. Radiocarbon 19, 355363.CrossRefGoogle Scholar
Turney, C.S.M., McGlone, M.S., Wilmshurst, J.M., (2003). Asynchronous climate change between New Zealand and the North Atlantic during the last deglaciation. Geology 31, 223226.Google Scholar
Williams, P.W., King, D.N.T., Zhao, J.-X., Collerson, K.D., (2005). Late Pleistocene to Holocene composite speleothem 18O and 13C chronologies from South Island, New Zealand—Did a global Younger Dryas really exist?. Earth and Planetary Science Letters 230, 301317.CrossRefGoogle Scholar