Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T06:37:54.739Z Has data issue: false hasContentIssue false

Timing and extent of Late Pleistocene glaciation in the Chugach Mountains, Alaska

Published online by Cambridge University Press:  08 February 2021

Joshua D. Valentino*
Affiliation:
Terracon, Ashburn, Virginia20147, USA Department of Geosciences, Virginia Tech, Blacksburg, Virginia24061, USA
Lewis A. Owen
Affiliation:
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina27695, USA
James A. Spotila
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia24061, USA
Jason M. Cesta
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio45221, USA
Marc W. Caffee
Affiliation:
Department of Physics, Purdue University, West Lafayette, Indiana47907, USA; Department of Earth, Atmospheric, and Planetary Science, Purdue University, West Lafayette, Indiana47907, USA
*
*Corresponding author at: Department of Geosciences, 4044 Derring Hall, Virginia Tech, 1405 Perry Street, Blacksburg, Virginia24061, USA. E-mail address: [email protected] (J.D. Valentino).

Abstract

Geomorphic mapping, landform and sediment analysis, and cosmogenic 10Be and 36Cl ages from erratics, moraine boulders, and glacially polished bedrock help define the timing of the Wisconsinan glaciations in the Chugach Mountains of south-central Alaska. The maximum extent of glaciation in the Chugach Mountains during the last glacial period (marine isotope stages [MIS] 5d through 2) occurred at ~50 ka during MIS 3. In the Williwaw Lakes valley and Thompson Pass areas of the Chugach Mountains, moraines date to ~26.7 ± 2.4, 25.4 ± 2.4, 18.8 ± 1.6, 19.3 ± 1.7, and 17.3 ± 1.5 ka, representing times of glacial retreat. These data suggest that glaciers retreated later in the Chugach Mountain than in other regions of Alaska. Reconstructed equilibrium-line altitude depressions range from 400 to 430 m for late Wisconsinan glacial advances in the Chugach Mountains, representing a possible temperature depression of 2.1–2.3°C. These reconstructed temperature depressions suggest that climate was warmer in this part of Alaska than in many other regions throughout Alaska and elsewhere in the world during the global last glacial maximum.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abers, G.A., 2008. Orogenesis from subducting thick crust and evidence from Alaska. In: Freymueller, J.T., Haeussler, P.J., Wesson, R.L., Ekström, G. (Eds.), Active Tectonics and Seismic Potential of Alaska 179. American Geophysical Union Monograph Series. Wiley, Hoboken, NJ, pp. 337349.Google Scholar
Ager, T.A., 1983. Holocene vegetational history of Alaska. In: Wright, H.E. Jr. (Ed.), Late-Quaternary Environments of the United States. Vol. 2, The Holocene. Minneapolis, University of Minnesota Press, pp. 128141.Google Scholar
Ager, T.A., 2000. Postglacial vegetation history of the Kachemak Bay area, Cook Inlet, south-central Alaska. In: Kelley, K.D., Gough, L.P. (Eds.), Geologic Studies in Alaska by the U.S. Geological Survey, 1998. U.S. Geological Survey Professional Paper 1615. U.S. Geological Survey, Denver, CO, pp. 147165.Google Scholar
Ager, T.A., Carrara, P.E. and McGeehin, J.P., 2010. Ecosystem development in the Girdwood area, south-central Alaska, following late Wisconsin glaciation. Canadian Journal of Earth Sciences, 47, 971-985.CrossRefGoogle Scholar
Arkle, J., Armstrong, P., Haeussler, P., Prior, M., Hartman, S., Sendziak, K., Brush, J., 2013. Focused exhumation in the syntaxis of the western Chugach Mountains and Prince William Sound, Alaska. Geological Society of America Bulletin 125, 776793.CrossRefGoogle Scholar
Badding, M.E., Briner, J.P., Kaufman, D.S., 2013. 10Be ages of late Pleistocene deglaciation and Neoglaciation in the north central Brooks Range, Arctic Alaska. Journal of Quaternary Science 28, 95102.CrossRefGoogle Scholar
Balascio, N.L., Kaufman, D.S., Manley, W.F., 2005. Equilibrium-line altitudes during the last glacial maximum across the Brooks Range, Alaska. Journal of Quaternary Science 20, 821.CrossRefGoogle Scholar
Balco, G., 2010. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews 30, 327.CrossRefGoogle Scholar
Benn, D.I., Owen, L.A., 2002. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International 97, 325.CrossRefGoogle Scholar
Berger, A.L. and Spotila, J.A., 2008. Denudation and deformation in a glaciated orogenic wedge: The St. Elias orogen, Alaska. Geology, 36(7), pp. 523-526.CrossRefGoogle Scholar
Berger, A.L., Spotila, J.A., Chapman, J.B., Pavlis, T.L., Enkelmann, E., Ruppert, N.A., Buscher, J.T., 2008. Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronological investigation of tectonic–climatic interactions within the central St. Elias Orogen, Alaska. Earth and Planetary Science Letters 270, 1324. http://dx.doi.org/10.1016/j.epsl.2008.02.034.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., 2000. Late Pleistocene glaciation of the southwestern Ahklun mountains, Alaska. Quaternary Research 53, 1322.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., 2008. Late Pleistocene mountain glaciation in Alaska: key chronologies. Journal of Quaternary Science 23, 659670.CrossRefGoogle Scholar
Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., Caffee, M.W., 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of America Bulletin 117, 11081120.CrossRefGoogle Scholar
Briner, J.P., Swanson, T.W., Caffee, M., 2001. Late Pleistocene cosmogenic 36Cl glacial chronology of the southwestern Ahklun Mountains, Alaska. Quaternary Research 56, 148154.CrossRefGoogle Scholar
Briner, J.P., Tulenko, J.P., Kaufman, D.S., Young, N.E., Baichtal, J.F., Lesnek, A.J., 2017. The last deglaciation of Alaska. Cuadernos de Investigacíon Geográfica 43, 429448.CrossRefGoogle Scholar
Broecker, W.S., 1997. Mountain glaciers: recorders of atmospheric water vapor content? Global Biogeochemical Cycles 11, 589597.CrossRefGoogle Scholar
Broecker, W.S., Denton, G.H., 1990. The role of ocean-atmosphere reorganizations in glacial cycles. Quaternary Science Reviews 9, 305341.CrossRefGoogle Scholar
Bruhn, R., Haeussler, P., 2006. Deformation driven by subduction and microplate collision: geodynamics of Cook Inlet basin, Alaska. Geological Society of America Bulletin 118, 289303.CrossRefGoogle Scholar
Buscher, J.T., Berger, A.L., Spotila, J.A., 2008. Exhumation in the Chugach–Kenai mountain belt above the Aleutian Subduction Zone, southern Alaska. In: Freymueller, J.T., Haeussler, P.J., Wesson, R.L., Ekström, G. (Eds.), Active Tectonics and Seismic Potential of Alaska 179. American Geophysical Union Monograph Series. Wiley, Hoboken, NJ, pp. 151166.Google Scholar
Calkin, P.E., Wiles, G.C., Barclay, D.J., 2001. Holocene coastal glaciation of Alaska. Quaternary Science Reviews 20, 449461.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Dial, R.J., Becker, M., Hope, A.G., Dial, C.R., Thomas, J., Alexandrovna, K., Golden, T.S., Shain, D.H., 2016. The role of temperature in the distribution of the glacier ice worm Mesenchytraeus solifugus (Annelida: Oligochaeta: Enchytraeidae). Arctic, Antarctic, and Alpine Research 48, 199-211.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., Brease, P., 2010a. Late Quaternary glaciation and equilibrium line altitude variations of the McKinley River region, central Alaska Range. Boreas 39, 233246.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., Li, D., Lowell, T.V., 2010b. Beryllium10 surface exposure dating of glacial successions in the central Alaska Range. Journal of Quaternary Science 25, 12591269.CrossRefGoogle Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.CrossRefGoogle Scholar
Finzel, E.S., Trop, J.M., Ridgway, K.D., Enkelmann, E., 2011. Upper plate proxies for flat-slab subduction processes in southern Alaska. Earth and Planetary Science Letters 303, 348360.CrossRefGoogle Scholar
Fuis, G., Moore, T., Plafker, G., Brocher, T., Fisher, M., Mooney, W., Nokleberg, W., et al. , 2008. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting. Geology 36, 267270.CrossRefGoogle Scholar
Haeussler, P.J., 2008. An overview of the Neotectonics of interior Alaska: far-field deformation from the Yakutat microplate collision. In: Freymueller, J.T., Haeussler, P.J., Wesson, R.L., Ekström, G. (Eds.), Active Tectonics and Seismic Potential of Alaska 179. American Geophysical Union Monograph Series. Wiley, Hoboken, NJ, pp. 83108.Google Scholar
Hallet, B., Putkonen, J., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.CrossRefGoogle ScholarPubMed
Heyman, J., 2014. Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quaternary Science Reviews 91, 3041.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., 2015. A stratigraphical basis for the last glacial maximum (LGM). Quaternary International 383, 174185.CrossRefGoogle Scholar
Karlstrom, T.N.V., 1958. Ground Conditions and Surficial Geology of the Kenai–Kasilof Area, Kenai Peninsula, South-Central Alaska. 1:63,360. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-269. U.S. Geological Survey, Reston, VA.Google Scholar
Karlstrom, T.N.V., 1961. The glacial history of Alaska: its bearing on paleoclimatic theory. Annals of the New York Academy of Sciences 95, 290340.CrossRefGoogle Scholar
Karlstrom, T.N.V., 1964. Quaternary Geology of the Kenai Lowland and Glacial History of the Cook Inlet Region, Alaska. Geological Survey Professional Paper 443. U.S. Government Printing Office, Washington, DC.CrossRefGoogle Scholar
Karlstrom, T.N.V., 1968. The Quaternary time scale-a current problem of correlation and radiometric dating. Means of correlation of Quaternary successions. In: Proceedings of the International Association for Quaternary Research 7th Congress, USA, 1965. Utah University Press, Salt Lake City, pp. 8, 121150.Google Scholar
Kaufman, D.S., Axford, Y.L., Henderson, A.C., McKay, N.P., Oswald, W.W., Saenger, C., Anderson, R.S., et al. , 2016. Holocene climate changes in eastern Beringia (NW North America)—a systematic review of multi-proxy evidence. Quaternary Science Reviews 147, 312339.CrossRefGoogle Scholar
Kaufman, D.S. and Manley, W.F., 2004. Pleistocene maximum and Late Wisconsinan glacier extents across Alaska, USA. In Developments in quaternary sciences (Vol. 2, pp. 9-27). Elsevier.Google Scholar
Kaufman, D.S., Manley, W.F., Forman, S.L., Layer, P.W., 2001. Pre-Late-Wisconsinan glacial history, coastal Ahklun Mountains, southwestern Alaska–new amino acid, thermoluminescence, and 40 Ar/39 Ar results. Quaternary Science Reviews 20, 337352.CrossRefGoogle Scholar
Kaufman, D.S., Young, N.E., Briner, J.P., Manley, W.F., 2011. Alaska Palaeo Glacier Atlas Version 2. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations Extent and Chronology. Part IV, A Closer Look. Developments in Quaternary Science. Elsevier, Amsterdam, pp. 427445.CrossRefGoogle Scholar
Kirchner, M., Faus Kessler, T., Jakobi, G., Leuchner, M., Ries, L., Scheel, H. E., Suppan, P., 2013. Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. International Journal of Climatology 33, 539555.CrossRefGoogle Scholar
Kohl, C.P., Nishizumi, K., 1992. Chemical isolation of quartz for measurement of in situ produced cosmogenic nuclides. Geochemica et Cosmochemica Acta 56, 35833587.CrossRefGoogle Scholar
Kopczynski, S.E., Kelley, S.E., Lowell, T.V., Evenson, E.B., Applegate, P.J., 2017. Latest Pleistocene advance and collapse of the Matanuska–Knik glacier system, Anchorage Lowland, southern Alaska. Quaternary Science Reviews 156, 121134.CrossRefGoogle Scholar
Kulp, J.L., Feely, H.W., Tryon, L.E., 1951. Lamont natural radiocarbon measurements. Science 114, 565568.CrossRefGoogle ScholarPubMed
Kulp, J.L., Tryon, L.E., Eckelman, W.R., Snell, W.A., 1952. Lamont natural radiocarbon measurements. Science 120, 409414.CrossRefGoogle Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424,439.CrossRefGoogle Scholar
Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160.CrossRefGoogle Scholar
Li, Y.K., 2018. Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS model for discrete sample sites. Journal of Mountain Science 15, 939947.CrossRefGoogle Scholar
Manley, W.F., Kaufman, D.S., Briner, J.P., 2001. Pleistocene glacial history of the southern Ahklun Mountains, southwestern Alaska: soil-development, morphometric, and radiocarbon constraints. Quaternary Science Reviews 20, 353370.CrossRefGoogle Scholar
Mann, D.H., Peteet, D.M., 1994. Extent and timing of the last glacial maximum in southwestern Alaska. Quaternary Research 42, 136148.CrossRefGoogle Scholar
Marrero, S.M., Phillips, F.M., Borchers, B., Lifton, N., Aumer, R., Balco, G., 2015a. Cosmogenic nuclide systematics and the CRONUScalc program. Quaternary Geochronology 31, 160187.CrossRefGoogle Scholar
Marrero, S.M., Phillips, F.M., Caffee, M.W., Gosse, J.C., 2015b. CRONUS-Earth cosmogenic 36Cl calibration. Quaternary Geochronology 31, 199219.CrossRefGoogle Scholar
Matmon, A., Schwartz, D.P., Haeussler, P.J., Finkel, R., Lienkaemper, J.J., Stenner, H.D., Dawson, T.E., 2006. Denali fault slip rates and Holocene–late Pleistocene kinematics of central Alaska. Geology 34, 645648.CrossRefGoogle Scholar
McCarthy, A., Mackintosh, A., Rieser, U., Fink, D., 2008. Mountain glacier chronology from Boulder Lake, New Zealand, indicates MIS 4 and MIS 2 ice advances of similar extent. Arctic, Antarctic, and Alpine Research 40, 695708.CrossRefGoogle Scholar
Menounos, B., Goehring, B.M., Osborn, G., Margold, M., Ward, B., Bond, J., Clarke, G.K.C., et al. ., 2017 Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781784.CrossRefGoogle ScholarPubMed
Mix, A.C., Bard, E., Schneider, R., 2001. Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.CrossRefGoogle Scholar
Moffit, F.H., 1935. Geology of the Tonsina District, Alaska. U.S. Government Printing Office, Washington, DC.Google Scholar
Munroe, J.S., Mickelson, D.M., 2002. Last glacial maximum equilibrium-line altitudes and paleoclimate, northern Uinta Mountains, Utah, USA. Journal of Glaciology 48, 257266.CrossRefGoogle Scholar
National Climate Data Center, 2007. Seward Meteorological Station (accessed June 6, 2016). http://www.ncdc.noaa.gov/cdo.web/quickdata.Google Scholar
Osipov, E.Y., 2004. Equilibrium-line altitudes on reconstructed LGM glaciers of the northwest Barguzinsky Ridge, northern Baikal, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 219226.CrossRefGoogle Scholar
Osmaston, H., 2005. Estimates of glacier equilibrium line altitudes by the area × altitude, the area× altitude balance ratio and the area × altitude balance index methods and their validation. Quaternary International 138, 2231.CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Clauzet, G., Tomas, R., Levis, S., Kothavala, Z., 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate 19, 25262544.CrossRefGoogle Scholar
Owen, L.A., Chen, J., Hedrick, K.A., Caffee, M.W., Robinson, A.C., Schoenbohm, L.M., Yuan, Z., Li, W., Imrecke, D.B., Liu, J., 2012. Quaternary glaciation of the Tashkurgan Valley, southeast Pamir. Quaternary Science Reviews 47, 5672.CrossRefGoogle Scholar
Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S. et al. . 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences 82, 5562.CrossRefGoogle Scholar
Pendleton, S.L., Ceperley, E.G., Briner, J.P., Kaufman, D.S., Zimmerman, S., 2015. Rapid and early deglaciation in the central Brooks Range, Arctic Alaska. Geology 43, 419422.CrossRefGoogle Scholar
Péwé, T.L., 1975. Quaternary Geology of Alaska. U.S. Geological Survey Professional Paper 835. U.S. Geological Survey, Reston, VA, p. 145.Google Scholar
Pinney, D.S., 1993. Late Quaternary Glacial and Volcanic Stratigraphy near Windy Creek, Katmai National Park, Alaska. Fairbanks, Master's thesis, University of Alaska, Fairbanks.Google Scholar
Pinney, D.S., Begét, J.E., 1991. Late Pleistocene volcanic deposits near the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. In: Reger, R.D. (ed.), Short Notes on Alaska Geology 1991. Alaska Division of Geological Geophysical Surveys Professional Report 111. Alaska Division of Geological Geophysical Surveys, Fairbanks, pp. 4553.CrossRefGoogle Scholar
Plafker, G., 1987. Regional geology and petroleum potential of the northern Gulf of Alaska continental margin. In: Scholl, D.W., Grantz, A., Vedder, J.G. (Eds.), Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins—Beaufort Sea to Baja California. Circum-Pacific Council for Energy and Mineral Resources. Earth Sciences Series 6. U.S. Department of Energy, Washington, DC, pp. 299–268.Google Scholar
Plafker, G., Nokleberg, W.J., Lull, J.S., 1989. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska. Journal of Geophysical Research 94, 42554295.CrossRefGoogle Scholar
Porter, S.C., 2000. Snowline depression in the tropics during the Last Glaciation. Quaternary Science Reviews 20, 10671091.CrossRefGoogle Scholar
Porter, S.C., Pierce, K.L., Hamilton, T.D., 1983. Late Wisconsinan mountain glaciation in the western United States. In: Porter, S.C. (Ed.), Late Quaternary Environments of the United States: The Late Pleistocene. University of Minnesota Press, Minneapolis, pp. 71111.Google Scholar
Ramsey, C.B., van der Plicht, J., Weninger, B., 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43, 381389.CrossRefGoogle Scholar
Reger, R.D., Combellick, R.A., Brigham-Grette, J., 1995. Update of latest Wisconsin events in the upper Cook Inlet region, southcentral Alaska. In Combellick, R.A., and Tannian, Fran, eds., Short Notes on Alaska Geology 1995: Alaska Division of Geological & Geophysical Surveys Professional Report 111, 4553.Google Scholar
Reger, R.D., Pinney, D.S., 1997. Last major glaciation of Kenai Lowland. In: Karl, S.M., Vaughn, N.R., Ryherd, T.J. (Eds.), 1997 Guide to the Geology of the Kenai Peninsula, Alaska. Alaska Geological Society, Anchorage, pp. 5467.Google Scholar
Reger, R.D., Pinney, D.S., Burke, R.M., Wiltse, M.A., 1996. Catalog and Initial Analyses of Geologic Data Related to Middle to Late Quaternary Deposits, Cook Inlet Region, Alaska. 1:250,000. Alaska Division of Geological Geophysical Surveys Report of Investigations 95-6. Alaska Division of Geological Geophysical Surveys, Fairbanks.CrossRefGoogle Scholar
Reger, R.D., Sturmann, A. G., Berg, E.E., Burns, P.A.C., 2007. A Guide to the Late Quaternary History of Northern and Western Kenai Peninsula, Alaska. State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, Fairbanks.CrossRefGoogle Scholar
Reger, R.D., Updike, R.G., 1983. Upper Cook Inlet region and Matanuska Valley. Quaternary Geology and Permafrost Along the Richardson and Glen Highways between Fairbanks and Anchorage, Alaska: Fairbanks to Anchorage, Alaska July 1–7, 1989, 110.CrossRefGoogle Scholar
Riehle, J., 2011. Alaskan Terrain Image Released. Eos, American Geophysical Union. 78, Issue 50Google Scholar
Rolland, C., 2003. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. Journal of Climate 16, 10321046.2.0.CO;2>CrossRefGoogle Scholar
Rymer, M.J., Sims, J.D., 1982. Lake-sediment evidence for the date of deglaciation of the Hidden Lake area, Kenai Peninsula, Alaska. Geology 10, 314316.2.0.CO;2>CrossRefGoogle Scholar
Sampson, K.M., Smith, L.C., 2006. Relative ages of Pleistocene moraines discerned from pebble counts: eastern Sierra Nevada, California. Physical Geography 27, 223235.CrossRefGoogle Scholar
Sass, L.C., Loso, M.G., Geck, J., Thoms, E.E., Mcgrath, D., 2017. Geometry, mass balance and thinning at Eklutna Glacier, Alaska: an altitude-mass-balance feedback with implications for water resources. Journal of Glaciology 63, 343354.CrossRefGoogle Scholar
Schaefer, J.M., Putnam, A.E., Denton, G.H., Kaplan, M.R., Birkel, S., Doughty, A.M., Kelly, S., et al. , 2015. The southern glacial maximum 65,000 years ago and its unfinished termination. Quaternary Science Reviews 114, 5260.CrossRefGoogle Scholar
Schmoll, H.R. and Dobrovolny, E., 1972. Generalized geologic map of Anchorage and vicinity, Alaska (No. 787-A).Google Scholar
Schmoll, H.R., Szabo, B.J., Rubin, M., Dobrovolny, E., 1972. Radiometric dating of marine shells from the Bootlegger Cove Clay, Anchorage area, Alaska. Geological Society of America Bulletin 83, 11071114.CrossRefGoogle Scholar
Schmoll, H.R., Yehle, L.A., 1986. Pleistocene glaciation of the upper Cook Inlet basin. In: Hamilton, T.D., Reed, K. M. and Thorson, R.M. (eds), Glaciation in Alaska, pp. 193-218. Alaska Geologic Society, Anchorage.Google Scholar
Schmoll, H.R., Yehle, L.A., Gardner, C.A., Odum, J.K., 1984. Guide to Surficial Geology and Glacial Stratigraphy in the upper Cook Inlet Basin. Alaska Geological Society Guidebook. Alaska Geological Society, Anchorage.Google Scholar
Schmoll, H.R., Yehle, L.A., Updike, R. G., 1999. Summary of Quaternary geology of the Municipality of Anchorage, Alaska. Quaternary International 60, 336.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, L., Finkel, R., Kamp, U., Shroder, J.F. Jr., 2007. Quaternary glacial history of the Central Karakoram. Quaternary Science Reviews 26, 33843405.CrossRefGoogle Scholar
Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., et al. , 2015. Holocene glacier fluctuations. Quaternary Science Reviews 111, 934.CrossRefGoogle Scholar
Stansell, N.D., Polissar, P.J., Abbott, M.B., 2007. Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida, Venezuelan Andes. Quaternary Research 67, 115127.CrossRefGoogle Scholar
Stilwell, K.B., Kaufman, D.S., 1996. Late Wisconsinan glacial history of the northern Alaska Peninsula, southwestern Alaska, USA. Arctic and Alpine Research 28(4), 475487.CrossRefGoogle Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105, 2375323759.CrossRefGoogle Scholar
Stone, J.O., Allan, G.L., Fifield, L.K., Cresswell, R.G., 1996. Cosmogenic chlorine-36 from calcium spallation. Geochimica et Cosmochimica Acta 60, 679692.CrossRefGoogle Scholar
Thackray, G.D., Owen, L.A., Yi, C., 2008. Timing and nature of late Quaternary mountain glaciation. Journal of Quaternary Science 23, 503508.CrossRefGoogle Scholar
Tulenko, J.P., Briner, J.P., Young, N.E., Schaefer, J., 2018. Beryllium-10 chronology of early and late Wisconsinan moraines in the Revelation Mountains, Alaska. Quaternary Science Reviews 197, 129141.CrossRefGoogle Scholar
Tulenko, J.P., Lofverstrom, M., Briner, J.P., 2020. Ice sheet influence on atmospheric circulation explains the patterns of Pleistocene alpine glacier records in North America. Earth and Planetary Science Letters 534, 116115.CrossRefGoogle Scholar
Ward, B.C., Bond, J.D., Gosse, J.C., 2007. Evidence for a 55–50 ka (early Wisconsin) glaciation of the Cordilleran ice sheet, Yukon Territory, Canada. Quaternary Research 68, 141150.CrossRefGoogle Scholar
Western Regional Climate Center, 2016. Period of Record Monthly Climate Summary. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?akthom. (accessed June 6, 2016)Google Scholar
Wolman, M.G., 1954. A method of sampling coarse river bed material. EOS, Transactions, American Geophysical Union 35, 951956.CrossRefGoogle Scholar
Young, N.E., Briner, J.P. and Kaufman, D.S., 2009. Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Alaska. Journal of Quaternary Science: Published for the Quaternary Research Association, 24, 677-689.CrossRefGoogle Scholar
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A 10Be production rate calibration for the Arctic. Journal of Quaternary Science 28, 515526.CrossRefGoogle Scholar
Supplementary material: Image

Valentino et al. supplementary material

Valentino et al. supplementary material 1

Download Valentino et al. supplementary material(Image)
Image 471.4 KB
Supplementary material: File

Valentino et al. supplementary material

Valentino et al. supplementary material 2

Download Valentino et al. supplementary material(File)
File 6.7 MB
Supplementary material: File

Valentino et al. supplementary material

Valentino et al. supplementary material 3
Download Valentino et al. supplementary material(File)
File 19.5 KB
Supplementary material: File

Valentino et al. supplementary material

Valentino et al. supplementary material 4

Download Valentino et al. supplementary material(File)
File 15 KB