Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:58:39.858Z Has data issue: false hasContentIssue false

Termination of the Last Glaciation in the Iberian Peninsula Inferred from the Pollen Sequence of Quintanar de la Sierra

Published online by Cambridge University Press:  20 January 2017

M. Cristina Peñalba
Affiliation:
Instituto de Ecología—UNAM, Apdo. Postal 1354, Hermosillo, 83000, Sonora, México
Maurice Arnold
Affiliation:
Centre des Faibles Radioactivités, Laboratoire mixte CNRS-CEA, Parc du CNRS, F-91198, Gif-sur-Yvette Cedex, France
Joël Guiot
Affiliation:
Laboratoire de Botanique Historique et Palynologie, URA CNRS D1152, Faculté des Sciences et Techniques St. Jérôme, 13397, Marseille Cedex 13, France
Jean-Claude Duplessy
Affiliation:
Centre des Faibles Radioactivités, Laboratoire mixte CNRS-CEA, Parc du CNRS, F-91198, Gif-sur-Yvette Cedex, France
Jacques-Louis de Beaulieu
Affiliation:
Laboratoire de Botanique Historique et Palynologie, URA CNRS D1152, Faculté des Sciences et Techniques St. Jérôme, 13397, Marseille Cedex 13, France

Abstract

A 4.5-m-thick late-glacial pollen sequence, supported by 17 AMS 14C dates, has been investigated at the Quintanar de la Sierra marshland (Iberian cordillera, north-central Spain). Pollen zones were defined that correspond to successive phases in vegetation history during the end of the Late Würm, late-glacial interstade, and Younger Dryas periods. A transfer function approach has been adopted to derive quantitative climate estimates from the pollen assemblage data. A first expansion ofJuniperus and Hippophae, about 13,500 14C yr B.P., indicates the beginning of the late-glacial interstade which is characterized by a Juniperus–Betula–Pinus succession that suggests higher temperatures and moisture than during full-glacial time. The Younger Dryas interval is recorded by a 120-cm-thick sediment unit that is dominated by herbaceous pollen. Transfer function estimates suggest that the climate during this period was cold, with low precipitation during most of the year, although not in summer. The Holocene arboreal recolonization in the area started about 10,000 14C yr B.P., with a renewed Juniperus–Betula–Pinus succession related to a strong increase in annual temperature and precipitation. The start of this process was synchronous with mean sea-surface temperature changes, as recorded from the nearby SU 81-18 marine core. The strong affinity with other European late-glacial pollen sequences demonstrates that the pattern of climatic changes during the last glacial–interglacial transition was similar in both northwestern and southwestern Europe.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R.M., Huntley,, B. and Watts, W. A., (1996). The vegetation and climate of northwest Iberia over the last 14,000 yr. Journal of Quaternary Science 11, 125147.3.0.CO;2-U>CrossRefGoogle Scholar
Ammann,, B. and Lotter, A. F., (1989). Late-glacial radiocarbon- and palyn-ostratigraphy on the Swiss Plateau. Boreas 18, 109126.Google Scholar
Bard,, E., Arnold,, M., Maurice,, P., Duprat,, J., Moyes,, J. and Duplessy, J. C., (1987). Retreat velocity of the North Atlantic Polar front during the last deglaciation determined by means of 14C accelerator mass spectrome-try. Nature 328, 791794.CrossRefGoogle Scholar
Beaulieu, J. L. de (1977). “Contribution pollenanalytique à l'histoire tardig-laciaire et holoce`ne de la végétation des Alpes méridionales françaises”. Unpublished The`se e`s Sciences, Université d'Aix-Marseille III.Google Scholar
Beaulieu, J. L., de, and Reille, M., (1982). Histoire de la végétation d'après les analyses polliniques. Ecologia Mediterranea 9 (3–4), 1936.CrossRefGoogle Scholar
Beaulieu, J. L. de, Pons,, A. and Reille, M., (1984). Recherches pollenanaly-tiques sur l'histoire de la végétation des Monts du Velay (Massif Central, France). Dissertationes Botanicae (Festschrift Welten) 72, 4570.Google Scholar
Beaulieu, J. L. de, Andrieu,, V., Lowe, J. J., Ponel,, P. and Reille, M., (1994). The Weichselian Late-glacial in southwestern Europe (Iberian Peninsula, Pyrenees, Massif Central, northern Apennines). Journal of Quaternary Science 9, 101107.CrossRefGoogle Scholar
Cour, P., (1974). Nouvelles techniques de détection des flux et des retombées polliniques: Àtude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16 (1), 103141.Google Scholar
Duplessy, J. C., Bard,, E., Labeyrie,, L., Duprat,, J. and Moyes, J., (1993). Oxygen isotope records and salinity changes in the Northeastern Atlantic Ocean during the last 18,000 years. Paleoceanography 8, 341350.Google Scholar
Faegri,, K. and Iversen, J., (1989). “Textbook of Pollen Analysis” (K. Faegri P. E. Kaland, and K. Krzywinski, Eds.), 4th ed. Wiley, Chichester.Google Scholar
Gaillard, M. J. and Digerfeldt, G., (1991). Palaeohydrological studies and their contribution to palaeoecological and palaeoclimatic reconstruction. Ecological Bulletins 41, 275282.Google Scholar
Goeury, C., (1988). Acquisition, gestion et représentation des données de l'analyse pollinique sur micro-ordinateur. Travaux de la section scienti-fique et technique de l'Institut franc¸ais de Pondiche´ry 25, 405416.Google Scholar
Goeury,, C. and Beaulieu, J. L. de (1979). A propos de la concentration du pollen a` l'aide de la liqueur de Thoulet dans les sédiments minéraux. Pollen et Spores 21 (1–2), 239251.Google Scholar
Goslar,, T., Arnold,, M., Bard,, E., Kuc,, T., Pazdur, M. F., Ralska-Jasiewic-zowa,, M., Pozanski,, K., Tisnerat,, N., Walanus,, A., Wicik,, B. and Wieck-owski, K., (1995). High concentration of atmospheric 14C during the Younger Dryas. Nature 377, 414417.CrossRefGoogle Scholar
Greig, J., (1996). Great Britain–England. In “Palaeoecological Events during the Last 15,000 Years. Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe” (B. E. Berglund H. J. B. Birks M. Ralska-Jasiewickzowa, and H. E. Wright, Eds.), pp. 1576. Wiley, Chichester.Google Scholar
Guiot, J., (1987). Late-Quaternary climatic change in France estimated from multivariate pollen time-series. Quaternary Research 28, 100118.Google Scholar
Guiot, J., (1990). Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography Palaeoclimatology Palaeo-ecology 80, 4969.Google Scholar
Guiot,, J. and Coûteaux, M., (1992). Quantitative climatic reconstruction from pollen data in the Grand Duchy of Luxemboug since 15,000 yr BP. Journal of Quaternary Science 7, 303309.Google Scholar
Guiot,, J., Harrison, S. P. and Prentice, I. C., (1993). Reconstruction of Holocene pattern of moisture in Europe using pollen and lake-level data. Quaternary Research 40, 139149.Google Scholar
Huntley,, B. and Birks, H. J. B., (1983). “An Atlas of Past and Present Pollen Maps for Europe 0–13,000 Years Ago.” Cambridge Univ. Press, Cambridge.Google Scholar
Lowe, J. J. and NASP Members (1994). Palaeoclimate of the North AtlanticGoogle Scholar
seaboards during the last glacial/interglacial transition. Quaternary International 28, 5161.Google Scholar
Menéndez Amor,, J. and Florschütz, F., (1961). Contribución al conoci-miento de la historia de la vegetación en España durante el Cuaternario. Estudios Geolo´gicos 17, 8399.Google Scholar
Menéndez Amor,, J. and Florschütz, F., (1963). Sur les éléments steppiques dans la végétation quaternaire de l'Espagne. Boletín de la Real Sociedad Española de Historia Natural (Geología) 61, 121133.Google Scholar
Montserrat, J. M., (1992). Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: Estudio palinológico. Monografıas del Instituto Pirenaico de Ecología 6, 147.Google Scholar
NASP Members: Executive Group (J. J. Lowe B. Ammann H. H. Birks, S., Björck G. R. Coope L. Cwynar J. L. de Beaulieu R. J. Mott D. M. Peteet, and M. J. C. Walker) (1994). Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14–9 ka BP): A contribution to IGCP-253. Journal of Quaternary Science 9, 185198.Google Scholar
Navarro Sánchez, G., (1986). Datos sobre la vegetación acuática de las lagunas glaciares de Urbión y Neila (Soria-Burgos). Lazaroa 7, 487495.Google Scholar
Ortigosa, L. M., (1986). “Geomorfología glaciar de la sierra Cebollera (Sis-tema Ibérico).” Instituto de Estudios Riojanos, Logroño.Google Scholar
Peñalba, M. C., (1989). “Dynamique de végétation tardiglaciaire et holoce`ne du centre-nord de l'Espagne d'apre`s l'analyse pollinique.” Unpublished Ph.D. dissertation, Université d'Aix-Marseille III.Google Scholar
Pérez-Obiol, R., (1987). “Evolució del paisatge vegetal quaternari a les zones d'Olot i Sils.” Unpublished Ph.D. dissertation, Universitat Auto`-noma de Barcelona.Google Scholar
Pérez-Obiol,, R. and Juliá, R., (1994). Climatic change on the Iberian Peninsula recorded in a 30,000 yr pollen record from Lake Banyoles. Quaternary Research 41, 9198.Google Scholar
Peterson, G. M., (1983). “Holocene Vegetation and Climate in the Western USSR.” Unpublished Ph.D. dissertation, University of Wisconsin, Madison.Google Scholar
Pons,, A., Beaulieu, J. L. de, Guiot,, J. and Reille, M., (1987). The Younger Dryas in southwestern Europe: An abrupt climatic change as evidenced from pollen records. In “Abrupt Climatic Change” (H. Berger and L. D. Labeyrie, Eds.), pp. 195208. Reidel,Google Scholar
Pons,, A. and Reille, M., (1988). The Holocene and Upper Pleistocene pollen record from Padul (Granada, Spain): A new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 243263.Google Scholar
Reille, M., (1993). Nouvelles recherches pollenanalytiques dans la région de Freychinède, Pyrénées Ariégeoises, France. Palynosciences 2, 109131.Google Scholar
Ruiz, F. J. M., (1994). “Evolución Tardiglaciar y Holocena de la vegetación del noroeste peninsular.” Unpublished Ph.D. dissertation, Escuela Téc-nica Superior de Ingenieros de Montes.Google Scholar
Thornes, J. B., (1968). Glacial and periglacial features in the Urbion Mountains, Spain. Estudios Geolo´gicos 24, 249258.Google Scholar
Turner,, C. and Hannon, G. E., (1988). Vegetational evidence for late Quaternary climatic changes in southwest Europe in relation to the influence of the north Atlantic Ocean. Philosophical Transactions of the Royal Society of London B318, 451485.Google Scholar
Watts, W. A., (1986). Stages of climatic change from Full glacial to Holo-cene in north-west Spain, southern France and Italy: A comparison of the Atlantic coast and the mediterranean basin. Current Issues in Climate Research. In “Proceedings of the EC Climatology Programme Symposium, Sophia Antipolis, France 1984” (A. Ghazi, and R. Fantechi, Eds.), pp. 101112. Reidel, Dordrecht.Google Scholar