Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T09:50:02.911Z Has data issue: false hasContentIssue false

A tephrochronologic method based on apatite trace-element chemistry

Published online by Cambridge University Press:  20 January 2017

Abstract

Geochemical correlation of ash-fall beds with conventional tephrochronologic methods is not feasible when original glass composition is altered. Thus, alternative correlation methods may be required. Initial studies of heavily altered Paleozoic tephra (K-bentonites) have suggested the potential for employing trace-element concentrations in apatite as ash-fall bed discriminators. To further test the utility of apatite trace-element tephrochronology, we analyzed apatite phenocrysts from unaltered volcanic rocks with an electron microprobe: nine samples from rocks erupted during the Quaternary and one sample from a rock erupted during the Paleogene. The resulting apatite trace-element data provide unique bed discriminators despite within-crystal variability. Each of the volcanic rocks studied possesses unique trends in Mg, Cl, Mn, Fe, Ce and Y concentrations in apatite. The results from this study establish an important tephrochronologic method that can be applied to nearly all portions of the Phanerozoic stratigraphic record and greatly assist development of an advanced timescale. In addition to establishing a fingerprint for a particular eruption, apatite chemistry provides useful information about the source magma.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Fax: + 1 315 443 3363.

References

Alloway, B., Larsen, G., Lowe, D., Shane, P., Westgate, J. Elias, S.A. Tephrochronology. Encyclopedia of Quaternary Science 4, (2007). 28692898.Google Scholar
Belousova, E., Griffin, W., and O'Reilly, S. Zircon crystal morphology, trace element signatures, and Hf isotope composition as a tool for petrogenietic modeling: examples from eastern Australia Granitoids. Journal of Petrology 47, 2 (2006). 329353. doi:http://dx.doi.org/10.1093/petrology/egi077CrossRefGoogle Scholar
Belosuova, E., Walters, W., Griffin, W., and O'Reilly, S. Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences 48, 4 (2001). 603619. http://dx.doi.org/10.1046/j.1440-0952.2001.00879.xGoogle Scholar
Bergström, S., Huff, W., Saltzman, M., Kolata, D., and Leslie, S. The greatest volcanic ash falls in the Phanerozoic: trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites. The Sedimentary Record 2, 4 (2004). 48.Google Scholar
Bindeman, I. Crystal sizes in evolving silicic magma chambers. Geology 31, 4 (2003). 367370.Google Scholar
Boyce, J., and Hervig, R. Magmatic degassing histories from apatite volatile stratigraphy. Geology 36, 1 (2008). 6366.CrossRefGoogle Scholar
Carey, A., Samson, S., and Sell, B. Utility and limitations of apatite phenocryst chemistry for continent-scale correlation of Ordovician K-bentonites. The Journal of Geology 117, 1 (2009). 114. http://dx.doi.org/10.1086/594368Google Scholar
Cerling, T., Brown, F., and Bowman, J. Low-temperature alteration of volcanic glass: hydration, Na, K, 18O, and Ar mobility. Chemical Geology 52, 3–4 (1985). 281293. http://dx.doi.org/10.1016/0168-9622(85)90040-5Google Scholar
Cronin, S., Neall, V., Stewart, R., and Palmer, A. A multiple-parameter approach to andesitic tephra correlation, Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research 72, (1996). 199215.Google Scholar
Delano, J., Tice, J., Mitchell, C., and Goldman, D. Rhyolitic glass in Ordovician K-bentonites: a new stratigraphic tool. Geology 22, (1994). 115118. http://dx.doi.org/10.1130/0091-7613(1994)022<0115:RGIOKB>2.3.CO;2Google Scholar
Davidson, J., Tepley, F., and Knesel, K. Isotopic fingerprinting may provide insights into evolution of magmatic systems. Eos Transactions of the American Geophysical Union 79, 15 (1998). 185 CrossRefGoogle Scholar
Dempster, T., Jolivet, M., Tubrett, M., and Braithwaite, C. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology 145, (2003). 568577. http://dx.doi.org/10.1007/s00410-003-0471-0Google Scholar
Emerson, N., Simo, J., Byers, C., and Fournelle, J. Correlation of (Ordovician, Mohawkian) K-bentonites in the upper Mississippi valley using apatite chemistry: implications for stratigraphic interpretation of the mixed carbonate–siliciclastic Decorah Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 210, (2004). 215233. http://dx.doi.org/10.1016/j.palaeo.2004.02.042Google Scholar
Fisher, R., and Schminke, H. Pyroclastic Rocks. (1984). Springer-Verlag, Berlin. 472, p.Google Scholar
Grimes, C., John, B., Keleman, P., Mazdab, F., Wooden, J., Cheadle, M., Hanghøj, K., and Schwartz, J. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 7 (2007). 643646.Google Scholar
Harangi, S.Z., Mason, P., and Lukacs, R. Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. Journal of Volcanology and Geothermal Research 143, (2005). 237257. http://dx.doi.org/10.1016/j.jvolgeores.2004.11.012Google Scholar
Haynes, J., Melson, W., and Kunk, M. Composition of biotite phenocrysts in Ordovician tephras casts doubt on the proposed trans-Atlantic correlation of the Millbrig K-bentonite (United States) and the Kinnekulle K-bentonite (Sweden). Geology 23, 9 (1995). 847850.Google Scholar
Hildreth, W. The Bishop Tuff; evidence for the origin of compositional zonation in silicic magma chambers. Chapin, C.E., and Elston, W.E. Ash-flow Tuffs. Special Paper — Geological Society of America 180, (1979). 4375.Google Scholar
Hoskin, P., and Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Hanchar, J., and Hoskin, P. Zircon. Reviews in Mineralogy and Geochemistry 53, (2003). 2762.Google Scholar
Hughes, J., and Rakovan, J. The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Kohn, M.J., Rakovan, J., and Hughes, J.M. Phosphates—Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy and Geochemistry 48, (2002). 112.CrossRefGoogle Scholar
Hunt, J., and Hill, P. Tephrological implications of beam size — sample-size effects in electron microprobe analysis of glass shards. Journal of Quaternary Science 16, 2 (2001). 105117. http://dx.doi.org/10.1002/jqs.571Google Scholar
Izett, G. Volcanic ash beds: recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States. Journal of Geophysical Research 86, B11 (1981). 1020010222. http://dx.doi.org/10.1029/JB086iB11p10200Google Scholar
Jarosewich, E., Nelen, J., and Norberg, J. Reference samples for electron microprobe analysis. Geostandards Newsletter 4, 1 (1980). 4347. http://dx.doi.org/10.1111/j.1751-908X.1980.tb00273.xGoogle Scholar
Jerram, D., and Martin, V. Understanding crystal populations and their significance through the magma plumbing system. Geological Society Special Publication 304, (2008). 133148. http://dx.doi.org/10.1144/ SP304.7Google Scholar
Jolliff, B., Papike, J., Shearer, C., and Shimizu, N. Inter- and intra-crystal REE variations in apatite from the Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta 53, 2 (1989). 429441. http://dx.doi.org/10.1016/0016-7037(89)90394-3Google Scholar
Kennett, J. Marine tephrochronology. Emiliani, C. The Sea; Ideas and Observations on Progress in the Study of the Seas. (1981). 13731436.Google Scholar
Kerrick, D., Eminhizer, L., and Villaume, J. The role of carbon film thickness in electron microprobe analysis. American Mineralogist 58, 9–10 (1973). 920925.Google Scholar
Kohn, B. Identification and significance of a late Pleistocene tephra in Canterbury District, South Island, New Zealand. Quaternary Research 11, 1 (1979). 7892. http://dx.doi.org/10.1016/0033-5894(79)90070-XCrossRefGoogle Scholar
Knutson, C., Peacor, D., and Kelly, W. Luminescence, color and fission track zoning in apatite crystals of the Panasqueira tin–tungsten deposit, Beira Baixa, Portugal. American Mineralogist 70, 7–8 (1985). 829837.Google Scholar
Lipman, P., and Weston, P. Phenocryst compositions of late ash-flow tuffs from the central San Juan caldera cluster: results from Creede drill-hole samples and implications for regional stratigraphy. United States Geological Survey Open File Report, 94-260-B. (2001). 43 p.Google Scholar
Lowe, D. Tephrochronology and its application: a review. Quaternary Geochronology 6, 2 (2011). 107153.Google Scholar
Lux, D., and Yates, M. Apatite and granite petrogenesis. Geological Society of America Abstracts with Programs 41, 3 (2009). 33 Google Scholar
McCoy, F. Distribution, redeposition, and mixing of tephra within deep-sea sediments of the eastern Mediterranean Sea. Self, S., and Sparks, R. Tephra Studies. NATO Advanced Study Institute Series vol. 75, (1980). 245254.Google Scholar
McHenry, L. Phenocryst composition as a tool for correlating fresh and altered tephra, Bed I, Olduvai Gorge, Tanzania. Stratigraphy 2, 2 (2005). 101115.Google Scholar
Mitchell, C., Adhya, S., Bergström, S., Joy, M., and Delano, J. Discovery of the Ordovician Millbrig K-bentonite Bed in the Trenton Group of New York State: implications for regional correlation and sequence stratigraphy in eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 210, (2004). 331346. http://dx.doi.org/10.1016/j.palaeo.2004.02.037Google Scholar
Morton, A., and Hallsworth, C. Stability of detrital heavy minerals during burial diagenesis. Mange, M.A., and Wright, D.T. Heavy Minerals in Use. Developments in Sedimentology 58, (2007). 215245.Google Scholar
Morton, A., and Yaxley, G. Detrital apatite geochemistry and its application in provenance studies. Geological Society of America Special Paper 420, (2007). 319344. http://dx.doi.org/10.1130/2006.2420(19)Google Scholar
Pearce, N., Bendall, , and Wesgate, J. Comment on “Some numerical considerations in the geochemical analysis of distal microtephra” by A.M. Pollard, S.P.E. Blockley and C.S. Lane. Applied Geochmestry 23, (2008). 13531364. http://dx.doi.org/10.1016/j.apgeochem.2008.01.002Google Scholar
Pearce, N., Westgate, J., Perkins, W., and Preece, S. The application of ICP-MS methods to tephrochronological problems. Applied Geochemistry 19, (2004). 289322. http://dx.doi.org/10.1016/S0883-2927(03)00153-7Google Scholar
Peng, G., Luhr, J., and McGee, J. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist 82, (1997). 12101224.Google Scholar
Piccoli, P., and Brown, M. Using apatite as a monitor of fluid evolution and flux during metamorphism: an example from the Barrovian zonal sequence in Dutchess County, New York. Geological Society of America Abstracts with Programs 37, 7 (2005). 227 Google Scholar
Piccoli, P., and Candela, P. Apatite in igneous systems. Kohn, M., Rakovan, J., and Hughes, J. Phosphates — Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy and Geochemistry 48, (2002). 255292.Google Scholar
Pollard, A., Blockley, S., and Lane, C. Some numerical considerations in the geochemical analysis of distal microtephra. Applied Geochemistry 21, (2006). 16921714. http://dx.doi.org/10.1016/j.apgeochem.2006.07.007Google Scholar
Pollard, A., Blockley, S., and Ward, K. Chemical alteration of tephra in the depositional environment: theoretical stability modeling. Quaternary Science 18, 5 (2003). 385394. http://dx.doi.org/10.1002/jqs.760Google Scholar
Potts, P. Handbook of Rock Analysis. (2003). Viridian Publishing, United Kingdom. 622 pGoogle Scholar
Rakovan, J., and Reeder, R. Differential incorporation of trace elements and dissymmetrization in apatite: the role of surface structure during growth. American Mineralogist 79, 9–10 (1994). 892903.Google Scholar
Riehle, J., Ager, T., Reger, R., Pinney, D., and Kaufman, D. Stratigraphic and compositional complexities of the late Quaternary Lethe tephra in South-central Alaska. Quaternary International 178, (2008). 210228. http://dx.doi.org/10.1016/j.quaint.2006.09.006CrossRefGoogle Scholar
Roeder, P., MacArthur, D., Ma, X., and Palmer, G. Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist 72, 7–8 (1987). 801811.Google Scholar
Samson, S., Matthews, S., Mitchell, C., and Goldman, D. Tephrochronology of highly altered ash beds: the use of trace element and Sr isotope geochemistry of apatite phenocrysts to correlate K-bentonites. Geochimica et Cosmochimica Acta 59, 12 (1995). 25272536. http://dx.doi.org/10.1016/0016-7037(95)00147-6Google Scholar
Sarna-Wojcicki, A., Bowman, H., Meyer, C., Russell, P., Woodward, M., McCoy, G., Rowe, J., Baedecker, P., Asaro, F., and Michael, H. Chemical analyses, correlations, and ages of upper Pliocene and Pleistocene ash layers of east-central and Southern California. United States Geological Survey Professional Paper 1293. (1984). 40 pp.Google Scholar
Sawka, W. REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows pluton, California. Transactions of the Royal Society of Edinburgh. Earth Sciences 79, 2–3 (1988). 157168.Google Scholar
Schoene, B., Latkoczy, C., Schaltegger, U., and Günther, D. A new method intergrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA). Geochimica et Cosmochimica Acta 74, (2010). 71447159. http://dx.doi.org/10.1016/j.gca.2010.09.016CrossRefGoogle Scholar
Sha, L., and Chappell, B. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica 63, 22 (1999). 38613881. http://dx.doi.org/10.1016/S0016-7037(99)00210-0Google Scholar
Shane, P. Tephrochronology: a New Zealand case study. Earth Science Reviews 49, 1–4 (2000). 223259. http://dx.doi.org/10.1016/S0012-8252(99)00058-6Google Scholar
Shane, P., Nairn, I.A., Martina, S.B., and Smith, V.C. Compositional heterogeneity in tephra deposits resulting from the eruption of multiple magma bodies: implications for tephrochronology. Quaternary International 178, (2008). 4453. http://dx.doi.org/10.1016/j.quaint.2006.11.014Google Scholar
Shane, P., Smith, V., and Nairn, I. Biotite composition as a tool for the identification of Quaternary tephra beds. Quaternary Research 59, (2003). 262270. http://dx.doi.org/10.1016/S0033-5894(03)00012-7Google Scholar
Stormer, J., Pierson, M., and Tacker, R. Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist 78, 5–6 (1993). 641648.Google Scholar
Suzuki, T. Analysis of titanomagnetite within weathered middle Pleistocene KMT tephra and its application for fluvial terrace chronology, Kanto Plain, central Japan. Quaternary International 178, (2008). 119127. http://dx.doi.org/10.1016/j.quaint.2006.10.039Google Scholar
Tepper, J., and Kuehner, S. Complex zoning in apatite from the Idaho batholith: a record of magma mixing and intracrystalline trace element diffusion. American Mineralogist 84, 4 (1999). 581595.Google Scholar
Turney, C., Blockley, S., Lowe, J., Wulf, S., Branch, N., Mastrolorenzoe, G., Swindle, G., Nathan, R., and Pollard, A. Geochemical characterization of Quaternary tephras from the Campanian Province, Italy. Quaternary International 178, (2008). 288305. http://dx.doi.org/10.1016/j.quaint.2007.02.007Google Scholar
Valley, J. Oxygen isotopes in zircon. Hanchar, J., and Hoskin, P. Zircon. Reviews in Mineralogy and Geochemistry 53, (2003). 343385.Google Scholar
Watson, E., and Green, T. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth and Planetary Science Letters 56, (1981). 405421. http://dx.doi.org/10.1016/0012-821X(81)90144-8Google Scholar
Westgate, J., and Gorton, M. Correlation techniques in tephra studies. Self, S., and Sparks, R.S.J. Tephra Studies. NATO Advanced Study Institute Series vol. 75, (1980). 7394.Google Scholar
Yen, F., and Goodwin, J. Correlation of tuff layers in the Green River Formation, Utah, using biotite compositions. Journal of Sedimentary Petrology 46, 2 (1976). 345354. http://dx.doi.org/10.1306/212F6F5A-2B24-11D7-8648000102C1865DGoogle Scholar
Supplementary material: PDF

Sell and Samson Supplementary Material

Supplementary Material

Download Sell and Samson Supplementary Material(PDF)
PDF 935.7 KB