Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T20:19:35.223Z Has data issue: false hasContentIssue false

Surface exposure dating reveals MIS-3 glacial maximum in the Khangai Mountains of Mongolia

Published online by Cambridge University Press:  20 January 2017

Henrik Rother*
Affiliation:
Institute for Geography and Geology, University of Greifswald, F.-L-Jahnstr. 17a, 17489 Greifswald, Germany
Frank Lehmkuhl
Affiliation:
Department of Geography, RWTH Aachen University, Wüllnerstr. 5b, 52056 Aachen, Germany
David Fink
Affiliation:
Institute for Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO), PMB1, Menai 2234, Australia
Veit Nottebaum
Affiliation:
Department of Geography, RWTH Aachen University, Wüllnerstr. 5b, 52056 Aachen, Germany
*
*Corresponding author. E-mail address:[email protected] (H. Rother).

Abstract

This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowski, U., Bergau, A., Seebach, D., Zech, R., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews 25, (2006). 10801096.CrossRefGoogle Scholar
An, Z., Colman, S.M., Zhou, W., Li, W., Brown, E.T., Jull, A.J.T., Cai, Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., and Xu, X. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports 2, (2012). 619 http://dx.doi.org/10.1038/srep00619. Nature Publishing GroupCrossRefGoogle ScholarPubMed
Arkhipov, S.A., Bespaly, V.G., Faustova, M.A., Glushkova, O.Y., Isayeva, L.L., and Velichko, A.A. Ice-sheet reconstructions. Quaternary Science Reviews 5, (1986). 475482.CrossRefGoogle Scholar
Arzhannikov, S.G., Braucher, R., Jolivet, M., Arzhannikova, A.V., Vasallo, R., Chauvet, A., Bourlès, D., and Chauvet, F. History of late Pleistocene glaciation in the central Sayan–Tuva Upland (southern Siberia). Quaternary Science Reviews 49, (2012). 1632.CrossRefGoogle Scholar
Back, S., and Strecker, M.R. Asymmetric late Pleistocene glaciations in the North Basin of the Baikal Rift, Russia. Journal of the Geological Society of London 155, (1998). 6169.CrossRefGoogle Scholar
Balco, G. 26Al–10Be exposure age/erosion rate calculators: update from v. 2.1 to v. 2.2. Update available on Cronus webpage under http://hess.ess.washington.edu/ (2009). Google Scholar
Child, D., Elliot, G., Mifsud, C., Smith, A.M., and Fink, D. Sample processing for Earth Science studies at ANTARES. Nuclear Instruments and Methods in Physics Research B172, (2000). 856860.CrossRefGoogle Scholar
Clark, P., Dyke, A., Shakun, J., Carlson, A., Clark, J., Wohlfarth, B., Mitrovica, J., Hostetier, S., and McCabe, A. The Last Glacial Maximum. Science 325, (2009). 710714.CrossRefGoogle ScholarPubMed
Cunningham, W.D. Cenozoic normal faulting and regional doming in the southern Hangay region, Central Mongolia: implications for the origin of the Baikal rift province. Tectonophysics 331, (2001). 389411.CrossRefGoogle Scholar
Desilets, D., and Zreda, M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in-situ cosmogenic dating. Earth and Planetary Science Letters 206, (2003). 2142.CrossRefGoogle Scholar
Desilets, D., Zreda, M., and Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, (2006). 265276.CrossRefGoogle Scholar
Devyatkin, E.V. Neotectonic structures of western Mongolia (in Russian). Mesozoic and Cenozoic Tectonics and Magmatism of Mongolia. (1975). Nauka, Moscow. 264282.Google Scholar
Dunai, T. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, (2001). 197212.CrossRefGoogle Scholar
Evans, D.J.A., and Twigg, D.R. The active temperate glacial landsystem: a model based on Breiðamerkurjökull and Fjallsjökull, Iceland. Quaternary Science Reviews 21, (2002). 21432177.CrossRefGoogle Scholar
Fedotov, A.P., Chebykin, E.P., Semenov, M.Y., Vorobyova, S.S., Osipov, E.Y., Golobokova, L.P., Pogodaeva, T.V., Zheleznyakova, T.O., Grachev, M.A., Tomurhuu, D., Oyunchimeg, T., Narantsetseg, T., Tomurtogoo, O., Dolgikh, P.T., Arsenyuk, M.I., and De Baptist, M. Changes in the volume and salinity of Lake Khubsugul (Mongolia) in response to global climate change in the upper Pleistocene and Holocene. Palaeogeogr. Palaeoclimatol. Palaeecolo. 209, (2004). 245257.CrossRefGoogle Scholar
Felauer, T. Jungquartäre Landschafts- und Klimageschichte der Südmongolei. Dissertation (in German). (2011). University Aachen (RWTH), School of Georessources and Material Technology, (Available online: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3666/.) Google Scholar
Feng, Z.-D., Chen, F.H., Tang, L.-Y., and Kang, J.-C. East Asian monsoon climates and Gobi dynamics in marine isotope stages 4 and 3. Catena 33, (1998). 2946.CrossRefGoogle Scholar
Fink, D., and Smith, A. An inter-comparison of Be-10 and Al-26 AMS reference standards and the Be-10 half life. Nucl. Instr. and Meth. in Physics Research B 259, (2007). 600609.CrossRefGoogle Scholar
Florensov, N.A., and Korzhnev, S.S. Geomorphology of the Mongolian People's Republic. Joined Soviet — Mongolian geological research expeditions. Transactions. vol. 28, (1982). (Moscow (in Russian) 255 pp.)Google Scholar
Fujita, K. Influence of precipitation seasonality on glacier mass balance and its sensitivity to climate change. Annals of Glaciology 48, (2008). 8892.CrossRefGoogle Scholar
Gillespie, A.R., Burke, R.M., Komatsu, G., and Bayasgalan, A. Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quaternary Research 69, (2008). 169187.CrossRefGoogle Scholar
Gosse, J.C., and Philips, F.M. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, (2001). 14751560.CrossRefGoogle Scholar
Grunert, J., Lehmkuhl, F., and Walther, M. Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International 65, 66 (2000). 171192.CrossRefGoogle Scholar
Harrison, S.P., Yu, G., and Tarasov, P.E. Late Quaternary lake level record from Northern Eurasia. Quaternary Research 45, (1996). 138159.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Caffee, M., Hättestrand, C., Harbor, J.M., Li, Y., Alexanderson, H., Zhou, L., and Hubbard, A. Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion. Quaternary Science Reviews 30, (2011). 19882001.CrossRefGoogle Scholar
Heyman, J., Stroeven, A., Harbor, J., and Caffee, M. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, (2011). 7180.CrossRefGoogle Scholar
Hülle, D., Hilgers, A., Radke, U., Stolz, C., Hempelmann, N., Grunert, J., Felauer, T., and Lehmkuhl, F. OSL dating of sediments from the Gobi Desert, Southern Mongolia. Quaternary Geochronology 5, (2010). 107113.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltsman, B. Milankovitch and Climate, Part 1. (1984). Reidel, Boston. 269305.Google Scholar
Kamp, U., and Haserodt, K. Quaternary glaciations in the high mountains of northern Pakistan. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations: Extent and Chronology, Part III: South America, Asia, Africa, Australasia, Antarctica. Development in Quaternary Science, 2c (2004). Elsevier, Amsterdam. 293311.CrossRefGoogle Scholar
Klinge, M. Glazialgeomorphologische Untersuchungen im mongolischen Altai als Beitrag zur jungquartären Landschafts- und Klimageschichte der Westmongolei. Aachener Geographische Arbeiten 35, (2001). 125 Google Scholar
Kohl, C., and Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides. Geochimica et Cosmochimiica Acta 56, (1992). 35833587.CrossRefGoogle Scholar
Komatsu, G., Brantingham, P.J., Olsen, J., and Baker, V. Paleoshoreline geomorphology of Böön Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39, (2001). 8398.CrossRefGoogle Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., and Stone, J. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, (2008). 846866.CrossRefGoogle Scholar
Kurita, N., Numagutti, A., Sugimorto, A., Ichiyanagi, K., and Yoshida, N. Relationship between the variation of isotopic ratios and the source of summer precipitation in eastern Siberia. Journal of Geophysical Research Atmosphere 108, (2003). http://dx.doi.org/10.1029/2001JD001359 (D11) (AAC 5-1, CiteID 4339) CrossRefGoogle Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.CrossRefGoogle Scholar
Lehmkuhl, F. The spatial distribution of loess and loess-like sediments in the mountain areas of Central and High Asia. Zeitschrift für Geomorphologie 111, (1997). 97116. (N.F., Suppl. Bd.) Google Scholar
Lehmkuhl, F. Quaternary Glaciations in Central and Western Mongolia. Owen, L.A. Mountain Glaciations. Quaternary Proceedings 6, (1998). 153167.Google Scholar
Lehmkuhl, F., and Lang, A. Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Mongolia). Journal of Quaternary Science 16, (2001). 6987.3.0.CO;2-O>CrossRefGoogle Scholar
Lehmkuhl, F., and Haselein, F. Quaternary palaeoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and Mongolia). Quaternary International 65, 66 (2000). 121145.CrossRefGoogle Scholar
Lehmkuhl, F., Frechen, M., and Zander, A. Luminescence chronology of fluvial and aeolian deposits in the Russian Altai (Southern Siberia). Quaternary Geochronology 2, (2007). 195201.CrossRefGoogle Scholar
Lehmkuhl, F., Klinge, M., and Stauch, G. The extent of Late Pleistocene glaciations in the Altai und Khangay Mountains. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations — Extent and Chronology, Part III: South America, Asia, Africa, Australia, Antarctica. (2004). Elsevier, Oxford. 243254.Google Scholar
Lehmkuhl, F., Klinge, M., and Stauch, G. The extent and timing of Late Pleistocene Glaciations in the Altai and neighboring mountain systems. Ehlers, J., Gibbard, P.L., Hughes, P.D. Developments in Quaternary Science — Extent and Chronology — A Closer Look vol. 15, (2011). 967979.CrossRefGoogle Scholar
Lehmkuhl, F., and Owen, L.A. Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34, (2005). 87100.CrossRefGoogle Scholar
Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., and Pyle, R. Addressing solar modulation and long-term uncertainties in scaling in situ cosmogenic nuclide production rates. Earth and Planetary Science Letters 239, (2005). 140161.CrossRefGoogle Scholar
Ma, Y.Z., Zhang, H.C., Li, J.J., Pachur, H.J., and Wünnemann, B. The evolution of the palynoflora and climatic environment during the late Pleistocene in the Tennger Desert, China. Acta Botanica Sinica 40, (1998). 871879.Google Scholar
Masarik, J., and Weiler, R. Production rates of cosmogenic nuclides in boulders. Earth and Planetary Science Letters 216, (2003). 201208.CrossRefGoogle Scholar
Mifsud, C., Fujioka, T., and Fink, D. Extraction and purification of quartz in rock using hot-phosphoric acid for in situ cosmogenic exposure dating. Nuclear Instruments and Methods (Series B) 294, (2012). 203207.CrossRefGoogle Scholar
Murad, W. Late Quaternary Vegetation History and Climate Change in the Gobi Desert, Southern Mongolia. PhD thesis, (2011). Göttingen University, Google Scholar
Murakami, T., Katsuta, N., Yamamoto, K., Takamatsu, , Takano, M., Oda, T., Matsumoto, G., Horiuchi, K., and Kawai, T. A 27-kyr record of environmental change in central Asia inferred from the sediment record of Lake Hovsgol, northwest Mongolia. Journal of Paleolimnology 43, (2010). 369383.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., and McAnich, J. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258, (2007). 403413.CrossRefGoogle Scholar
Owen, L.A., Windley, B.F., Cunningham, W.D., Badamgarov, J., and Dorjnamjaa, D. Quaternary alluvial fans in the Gobi Desert, southern Mongolia: evidence for neotectonics and climate change. Journal of Quaternary Science 12, (1997). 239252.3.0.CO;2-P>CrossRefGoogle Scholar
Owen, L.A., Richards, B., Rhodes, E.J., Cunningham, W.D., Windley, B.F., Badamgarav, J., and Dorjnamajaa, D. Relic permafrost structures in the Gobi of Mongolia: age and significance. Journal of Quaternary Science 13, (1998). 539547.3.0.CO;2-N>CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Caffee, M.W., and Gualtieri, L. Timing of multiple glaciations during the Late Quaternary in the Hunza Valley, Karakoram Mountains, Northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin 114, (2002). 593604.2.0.CO;2>CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L., and Caffee, M.W. Timing and style of glaciation in NE Tibet. Geological Society of America Bulletin 115, (2003). 13561364.CrossRefGoogle Scholar
Owen, L.A., Caffee, M.W., Finkel, R.C., and Deong, Y.B. Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science 23, (2008). 513531.CrossRefGoogle Scholar
Owen, L.A., Chen, J., Hedrick, K.A., Caffee, M.W., Robinson, A.C., Schoenbohm, L.M., Yuan, Z., Li, W., Imrecke, D.B., and Liu, J. Quaternary glaciation of the Taskurgan Valley, Southeast Pamir. Quaternary Science Reviews 47, (2012). 5672.CrossRefGoogle Scholar
Pachur, H.-J., Wünnemann, B., and Zhang, H. Lake evolution in the Tengger Desert, Northwestern China, during the last 40,000 years. Quaternary Research 44, (1995). 171180.CrossRefGoogle Scholar
Reuther, A.U., Herget, J., Ivy-Ochs, S., Borodavko, P., Kubik, P.W., and Heine, K. Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenic in situ 10Be. Geology 34, (2006). 913916.CrossRefGoogle Scholar
Röhringer, I., Zech, R., Abramowski, U., Sosin, P., Aldahan, A., Kubik, P.W., Zöller, L., and Zech, W. The late Pleistocene glaciation in the Bogchigir Valleys (Pamir, Tajikistan) based on 10Be surface exposure dating. Quaternary Research 78, (2012). 590597.CrossRefGoogle Scholar
Rother, H., Lehmkuhl, F., Stauch, G., Freeman, S., and Davidson, A. A New Surface Exposure Age Chronology from the Eastern Kunlun Shan (Lake Donggi Cona Catchment, NE-Tibet): Early Last Glacial Ice Maxima and the ‘Missing’ LGM. (2013). European Geoscience Union, (2013, Abstract.) Google Scholar
Schlütz, F., Dulamsuren, C., Wieckowska, M., Mühlenberg, M., and Hauck, M. Late Holocene vegetation history suggests natural origin of steppes in the northern Mongolian mountain taiga. Palaeogeography, Palaeoclimatology, Palaeoecology 261, (2008). 203217.CrossRefGoogle Scholar
Shi, Y. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International 97–98, (2002). 7991.CrossRefGoogle Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, (2000). 2375323759.CrossRefGoogle Scholar
Sun, Q., Wang, S., Zhou, J., Shen, J., Cheng, P., Xie, X., and Wu, F. Lake surface fluctuations since the late deglaciation at Lake Daihai, North central China: a direct indicator of hydrological process response to East Asian monsoon climate. Quaternary International 194, (2009). 4554.CrossRefGoogle Scholar
Talvite, N.A. Determination of quartz in presence of silicates using phosphoric acid. Analytical Chemistry 23, (1951). 623626.CrossRefGoogle Scholar
Tarasov, P.E., Peyron, O., Guiot, J., Brewer, S., Volkova, V.S., Bezusko, L.G., Dorofeyuk, N.I., Kvavadze, E.V., Osipova, I.M., and Panova, N.K. Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Climate Dynamics 15, (1999). 227240.CrossRefGoogle Scholar
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.A., Cole-Dai, J., and Bolzan, J.F. Tropical climate instability: the last glacial cycle from Quinghai-Tibetan ice core. Science 276, (1997). 18211825.CrossRefGoogle Scholar
Walther, M. Befunde zur Seespiegel- und Klimaentwicklung in der Nordwest-Mongolei. Die Erde 130, (1999). 131150.Google Scholar
Watanabe, T., Nakamura, T., Watanabe Nara, F., Kakegawa, T., Horiuchi, K., Senda, R., Oda, T., Nishimura, M., Matsumoto, G.I., and Kawai, T. High-time resolution AMS 14C data sets for Lake Baikal and Lake Hovsgol sediment cores: changes in radiocarbon age and sedimentation rates during the transition from the Last Glacial to the Holocene. Quaternary International 205, (2009). 1220.CrossRefGoogle Scholar
Wen, X., Li, B., Zheng, Y., Zhang, D.D., and Ye, J. Climate variability in the Salawusu River valley of the Ordos Plateau (Inner Mongolia, China) during Marine Isotope Stage 3. Journal of Quaternary Science 24, (2008). 6174.CrossRefGoogle Scholar
Whitlock, C., and Bartlein, P. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388, (1997). 5761.CrossRefGoogle Scholar
Wünnemann, B., Pachur, H.-J., Li, J., and Zhang, H. Chronologie der pleistozänen und holozänen Seespiegelschwankungen des Gaxun Nur/Sogo Nur und Baijian Hu, Innere Mongolei, NW-China. Petermanns Geographische Mitteilungen 142, (1998). 191206.Google Scholar
Xu, X., Kleidon, A., Miller, L., Wang, S., Wang, L., and Dong, G. Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change: a review. Boreas 39, (2009). 215232.CrossRefGoogle Scholar
Yamagichi, S., and Fujita, K. Modeling glacier behavior under different precipitation seasonalities. Arctic Antarctic and Alpine Research 45, (2013). 143152.CrossRefGoogle Scholar
Yang, X., Rost, K.T., Lehmkuhl, F., Zhenda, Z., and Dodson, J. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International 118, 119 (2004). 6985.CrossRefGoogle Scholar
Zech, R. A late Pleistocene glacial chronology from the Kitschi–Kurumdu Valley, Tien Shan (Kyrgyzstan), based on 10Be surface exposure dating. Quaternary Research 77, (2012). 281288.CrossRefGoogle Scholar
Zorin, Y.A. Geodynamics of the western part of the Mongolia Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306, (1999). 3356.CrossRefGoogle Scholar