Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T06:39:13.789Z Has data issue: false hasContentIssue false

Stable Isotopes of Holocene Calcareous Tufa in Southern Poland as Paleoclimatic Indicators

Published online by Cambridge University Press:  20 January 2017

Anna Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Mieczyslaw F. Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Leszek Starkel
Affiliation:
Department of Geomorphology and Hydrology of Mountains and Uplands, Institute of Geography and Spatial Organisation, Polish Academy of Sciences, Sw Jana 22, PL-31-018 Cracow, Poland
Joachim Szulc
Affiliation:
Institute of Geological Sciences, Jagellonian University, Oleandry 2a, PL-30-056 Cracow, Poland

Abstract

The isotopic composition of oxygen in freshwater calcareous tufa seems to be a sensitive indicator of past climatic changes. Results of measurements of δc18O and δc13C in tufa samples dated with the 14C method are used to reconstruct Holocene climatic changes in southern Poland. Values of δc18O obtained on tufa samples from four sites (Raclawka, Rzerzuŝnia, Trzebienice, Sieradowice) representing different hydrodynamic conditions of tufa sedimentation seem to form a selfconsistent series. These values, with some simplifying assumptions concerning the course of tufa sedimentation, were therefore used to estimate mean annual temperatures in the interval ca. 9500-2000 yr B.P. When the resulting curve of thermal changes in southern Poland is compared with changes of deposition and erosion of tuffaceous sediments and with results of other methods of reconstruction of paleoclimate in central Europe, a reasonable agreement among the different specific methods is seen.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, P., Awramik, S.M., Osborne, R.H., Tomellini, S., (1982). Plio-pleistocene lacustrine stromatolites from Lake Turkana, Kenya: Morphology, stratigraphy and stable isotopes. Sedimentary Geology. 1, 1-26.Google Scholar
Alexandrowicz, S.W., (1983). Malacofauna of Holocene calcareous sediments of Cracow Upland. Acta Geologica Polonica. 33, 117-158.Google Scholar
Allan, J.R., Matthews, R.K., (1982). Isotope signatures associated with early meteoric diagenesis. Sedimentology. 29, 797-817.Google Scholar
Becker, B., (1982). Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flussablagerungen, ein Beitrag zur nacheiszeitlichen Auenentwicklung im südlichen Mitteleuropa. Mitteilungen der Kommission für Quartärforschung. 5 Österreich. Akad. der Wiss, Wien.Google Scholar
Berner, R.A., (1980). Cristallization and dissolution kinetics of CaCO3 in sea water. Cristallisationdeformation-dissolution des carbonates. Univ. Bordeaux III, Bordeaux, 33-58.Google Scholar
Bortenschlager, S., (1982). Chronostratigraphic subdivisions of the Holocene in the Alps. Striae. 16, 75-79.Google Scholar
Bögli, A., (1978). Karsthydrographie und Physische Speläologie. Springer, Berlin.Google Scholar
Buccino, G., D'Argenio, B., Ferreri, V., Brancaccio, L., Ferreri, M., Panichi, C., Stanzione, D., (1978). I travertini della Bassa Valle del Tanagro (Campania): Studio geomorfologico, sedimentologico et geochimico. Bolletino della Societa Geologica Italiana. 97, 617-646.Google Scholar
Covich, A., Stuiver, M., (1974). Changes in oxygen 18 as measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnology and Oceanography. 19, 682-691.CrossRefGoogle Scholar
Dandurand, J.L., Gout, R., Hoefs, J., Menschel, G., Schott, J., Usdowski, E., (1982). Kinetically controlled variations of major components and carbon and oxygen isotopes in calcite-precipitating spring. Chemical Geology. 36, 299-315.Google Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus. 16, 436-468.Google Scholar
D'Argenio, B., Ferreri, V., Stanzione, D., Brancaccio, L., Ferreri, M., (1983). Il travertini di Pontecagnano (Campagna): Geomorfologia, sedimentologia, geochimica. Bolletino della Societa Geologica Italiana. 102, 123-136.Google Scholar
Demovic, R., Hoefs, J., Wedepohl, K.H., (1972). Geochimische Untersuchungen an Travertinen der Slovakei. Contributions of Mineralogy and Petrology. 31, 15-38.Google Scholar
Dynowska, J., (1983). Zródła Wyżyny Krakowsko-Wieluńskiej i Miechowskiej. Studia Oŝrodka Dokumentacji Fizjograficznej PAN. Vol. 11, 1-135.Google Scholar
Eicher, U., Siegenthaler, U., (1976). Palynological and oxygen isotope investigations on late-glacial sediment cores from Swiss Lakes. Boreas. 5, 109-117.Google Scholar
Franke, H.W., Geyh, M.A., (1971). 14C-Datierungen von Kalksinter aus slowenischen Höhlen. Der Aufschluss. 22, 235-237.Google Scholar
Friedman, I., (1970). Some investigations of the deposition of travertine from hot springs. I. The isotopic chemistry of a travertine depositing spring. Geochimica et Cosmochimica Acta. 34, 1303-1315.Google Scholar
Gaillard, M.J., (1985). Postglacial paleoclimatic changes in Scandinavia and Central Europe: A tentative correlation based on studies of lake level fluctuations. Ecologia meditterranea. 11, 235-237.Google Scholar
Geyh, M.A., (1983). Use of stable isotopes for reconstruction of paleoclimatic conditions. Quaternary Studies in Poland. 4, 61-71.Google Scholar
Geyh, M.A., Schillath, B., (1966). Messung der Kohlenstoff-Isotopenhäufigkeit von Kalksinterproben aus der Langenfelder Höhle. Der Aufschlus. 12, 315-323.Google Scholar
Gil, E., Gilot, E., Kotarba, A., Starkel, L., Szczepanek, K., (1974). An early Holocene landslide in the Niski Beskid and its significance for paleogeographical reconstructions. Studia Geomorphologica Carpatho-Balcanica. 8, 69-83.Google Scholar
Gonfiantini, R., Panichi, C., Tongiorgi, E., (1968). Isotopic disequilibrium in travertine deposition. Earth and Planetary Science Letters. 5, 55-58.CrossRefGoogle Scholar
Grabczak, J., Maloszewski, P., Różański, K., Zuber, A., (1984). Estimation of the tritium input function with the aid of stable isotopes. Catena. 11, 105-111.Google Scholar
Groschopf, P., (1952). Pollen analytische Datierung Württembergicher Kalktuffe und der postglaziale Klima-Ablauf. Jahreshefte der Geologischen Abteilung der Württembergischen Statistichen Landesamt. 2, 71-94.Google Scholar
Guerts, M.A., (1976). Genese et stratigraphie des travertins de fond de vallee en Belgique. Acta Geographica Lovaniensia. 16, 66.Google Scholar
Harmon, R.S., Schwarcz, H.P., Ford, D.C., Koch, D.L., (1979). An isotope paleotemperature record for the late Wisconsinian time in northeast Iowa. Geology. 7, 430-433.Google Scholar
Harmon, R.S., Thompson, P., Schwarcz, H.P., Ford, D.C., (1978). Late Pleistocene paleoclimates of North America as inferred from stable isotope studies of speleothems. Quaternary Research. 9, 54-70.Google Scholar
Hendy, C.W., (1971). The isotope geochemistry of speleothems. I. The calculation of the effect of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta. 35, 801-824.Google Scholar
Hendy, C.W., Wilson, A.T., (1968). Paleoclimatic data from speleothems. Nature (London). 19, 48-51.Google Scholar
Jersak, J., Kaltka, T., Snieszko, Z., (1983). Późnovistuliańskie i holoceńskie osady w rejonie Sieradowic (Góry S̈wietokrzyskie). Późnovistuliańskie i holoceńskie zmiany ŝrodowiska geograficznego na obszarach lessowych. Przewodnik konferencji. Uniw. S̈laski, Katowice, 84-92.Google Scholar
Kelts, K., Hsü, K.J., Freshwater carbonate sedimentation. Lerman, A., (1978). Lakes: Chemistry, geology, Physics. Springer, Berlin, 295-394.Google Scholar
Kimball, I.P., (1978). Biology. 4th ed. Addison-Wesley, Reading, MA, 857.Google Scholar
Krumbein, W.E., Calcification by bacteria and algae. Trudinger, P.A., Swaine, D.J., (1979). Biogeochemical Cycling of Mineral Forming Elements. Elsevier, Amsterdam, 47-68.Google Scholar
Lamb, H.H., (1977). Climate: Present, Past and Future. Vol. 2 Methuen, London, Climatic History and the Future.Google Scholar
Lożek, V., (1982). Faunengeschichliche Grundlinien zur spät-und nacheiszeitlichen Entwicklung der Molluskenbestände in Mittel-europa. Rozpravy CSAV. 92, 1-106.Google Scholar
Magaritz, M., Carbon and oxygen isotope composition of recent and ancient coated grains. Peryt, T.M., (1983). Coated Grains. Springer, Berlin, 27-37.Google Scholar
Mamakowa, K., Starkel, L., (1977). Stratigraphy of the eo- and mesoholocene alluvia in Podgrodzie upon Wisłoka river. Studia Geomorphologica Carpatho-Balcanica. 11, 101-110.Google Scholar
Michaelis, J., Usdowski, E., Menschel, G., (1985). Partitioning of 13C and 12C on the degassing of CO2 and the precipitation of calcite: Rayleigh-type fractionation and a kinetic model. American Journal of Science. 285, 318-327.Google Scholar
Mörner, N.A., Wallin, B., (1977). A 10,000-year temperature record from Gotland, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology. 21, 113-138.Google Scholar
Müller, G., Wagner, F., Holocene carbonate evolution in Lake Balaton (Hungary): A response to climate and impact of man. Matter, A., Tucker, M.E., (1978). Modern and Ancient Lake Sediments. Blackwell, Oxford, 55-80.Google Scholar
Patzelt, G., (1977). Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. Dendrochronologie und postglaziale Klimaschwankungen in Europa. Erdwissenschaftliche Forschung. Vol. 13, 249-259, Wiesbaden.Google Scholar
Pazdur, A., (1988). The relations between carbon isotope composition and apparent age of freshwater tuffaceous sediments. Radiocarbon. 30, 7-18.Google Scholar
Pazdur, A., Pazdur, M.F., (1986). 14C dating of calcareous tufa from different environments. Radiocarbon. 28, 534-538.Google Scholar
Pazdur, A., Pazdur, M.F., Szulc, J., (1988). Radiocarbon dating of Holocene tufa from selected sites in southern Poland. Radiocarbon. 30 2.Google Scholar
Picknett, R.G., Bray, L.G., Stenner, R.D., The chemistry of cave waters. Ford, T.D., Cullingford, C.H.D., (1976). The Science of Speleology. Academic Press, New York/London, 213-226.Google Scholar
Ralska-Jasiewiczowa, M., (1983). Isopollen maps for Poland: 0–11 000 years B.P.. New Phytologist. 94, 133-175.Google Scholar
Ralska-Jasiewiczowa, M., Starkel, L., (1986). Record of the hydrological changes during the Holocene in the lake, mire, and fluvial deposits of Poland. Folia Quaternaria. 61.Google Scholar
Reynolds, R.C., (1984). Lake Powell Field Guide. Dartmouth College, Hannover, NH, 260.Google Scholar
Różański, K., (1984). Temporal and spatial variations of deuterium and oxygen-18 in European precipitation and groundwaters. 3. Arbeitstagung “Isotope in der Natur”. AdW der DDR, Leipzig, 341-353.Google Scholar
Różański, K., (1985). Deuterium and oxygen-18 in European groundwaters links to atmospheric circulation in the past. Chemical Geology. 52, 349-363.Google Scholar
Savelli, C., Wedepohl, K.H., (1969). Geochimische Untersuchungen an Sinterkalken (Travertinen). Contribution of Mineralogy and Petrology. 21, 238-256.Google Scholar
Srdoc, D., Horvatincic, N., Obelic, B., Sliepcevic, A., (1983). Radiocarbon dating of tufa in paleoclimatic studies. Radiocarbon. 25, 421-427.Google Scholar
Starkel, L., (1977). Paleogeografia holocenu. PWN, Warszawa.Google Scholar
Starkel, L., The reflection of hydrologic changes in the fluvial environment of the temperate zone during the last 15,000 years. Gregory, K.J., (1983). Background to Palaeohydrology: A Perspective. Vol. 2 Wiley, New York, 3-235.Google Scholar
Stiller, M., (1979). Stable isotopic composition of carbonates in Lake Huleh sediments. Ein Boek Symp. .Google Scholar
Stuiver, M., (1970). Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. Journal of Geophysical Research. 75, 5247-5257.Google Scholar
Stuiver, M., (1980). Workshop on 14C data reporting. Radiocarbon. 22, 964-966.Google Scholar
Stuiver, M., Polach, H.A., (1977). Discussion: Reporting of 14C data. Radiocarbon. 19, 355-363.Google Scholar
Szulc, J., (1983). Genesis and classification of travertine deposits. Przeglad Geologiczny. 31, 231-236.Google Scholar
Szulc, J., (1984). Sedimentation of the Quaternary travertines in the southern Poland. Unpublished Ph.D. Thesis. Pol. Acad. of Sci, Cracow.Google Scholar
Szulc, J., (1986). Holocene travertine deposits of the Cracow Upland. IAS 7th European Meeting, Excursion Guidebook. 185-189, Cracow.Google Scholar
Thompson, P., Schwarcz, H.P., Ford, D.C., (1976). Stable isotope geochemistry, geothermometry, and geochronology of speleothems from west Virginia. Geological Society of America Bulletin. 87, 1730-1738.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, P.M., Otlet, R.L., Sweeting, M.M., (1980). Hydrological implications from 14C profiling of UK tufa. Radiocarbon. 22, 897-908.Google Scholar
Tlałka, A., (1970). Obieg wody w zrebowym obszarze wyżynnym na przykładzie dorzecza Rudawy. The circulation of water in an upland fault region illustrated by the example of the Rudawa basinZeszyty Naukowe UJ. Prace Geograficzne. 24, 141.Google Scholar
Usdowski, E., Hoefs, J., Menschel, G., (1979). Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring: A model of chemical variations with inorganic CaCO3 precipitation. Earth and Planetary Science Letters. 42, 267-276.Google Scholar
Usdowski, H.E., Dandurand, J.L., Gout, R., Hoefs, J., Menschel, G., Schott, J., (1980). Aspects cinetiques de la precipitation naturelle de la calcite. Cristalisation, deformation, disolution des carbonates. 439-447, Bordeaux.Google Scholar
Van der Straaten, C.M., Mook, W.G., (1983). Stable isotopic composition of precipitation and climatic variability. Paleoclimates and Paleowaters: A collection of Environmental Isotope Studies. IAEA, Vienna, 53-64.Google Scholar