Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T06:26:21.205Z Has data issue: false hasContentIssue false

Stable isotope composition of subfossil Cerastoderma glaucum shells from the szczecin bay brackish deposits and its palaeogeographical implications (South Baltic Coast, Poland)

Published online by Cambridge University Press:  20 January 2017

Ryszard K. Borówka
Affiliation:
Institute of Marine and Coastal Sciences, Faculty of Geosciences, University of Szczecin, Mickiewicza 18, 70-383 Szczecin, Poland
Wacław Strobel
Affiliation:
Institute of Agrophysics, Polish Academy of Science, Doświadczalna 4, 20-290 Lublin, Poland
Stanisław Hałas*
Affiliation:
Institute of Physics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
*
*Corresponding author. E-mail addresses:[email protected] (R.K. Borówka), [email protected] (W. Strobel), [email protected] (S. Hałas).

Abstract

The environmental conditions of the Szczecin Bay, which existed prior to Szczecin Lagoon, have been reconstructed on the basis of the stable carbon and oxygen isotope (18O and 13C) analysis and radiocarbon dates obtained for subfossil shells of Cerastoderma (Cardium) glaucum. The shells in the collected core were well preserved in their life positions, representing a geochemical record of past temperature variation over the middle Holocene. Three major periods with different thermal conditions have been distinguished in the interval ~ 6000–4300 cal yr BP, when the important Littorina regional transgression took place. During the first period, 6000–5250 cal yr BP, water temperature decreased by 1.4°C, and then remained constant over the second period (5250–4750 cal yr BP). In contrast, during the third period (4750–4300 cal yr BP) both δ-values were highly variable and the mean summer temperature (March–November) increased by about 3.5°C. During first two periods, δ18O and δ13C were significantly correlated, indicating stability of the environmental conditions.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alheit, J. Hagen, E. 1997, Long-term climate forcing of European herring and sardine populations. Fisheries Oceanography 6, 130139.Google Scholar
Antonsson, K. Seppä, H. 2007, Holocene temperatures in Bohuslän, southwest Sweden: a quantitative reconstruction from fossil pollen data. Boreas 36, 400410.Google Scholar
Bemis, B.E. Spero, H.J. Bijma, J. Lea, D.W. 1998, Reevaluation of oxygen isotopic composition of planctonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150160.CrossRefGoogle Scholar
Björck, S. 1995, A review of the history of the Baltic Sea, 13.0—8.0 ka BP. Quaternary International 27, 1940.CrossRefGoogle Scholar
Böhm, F. Joachimski, M.M. Dullo, W.C. Eisenhauer, A. Lehnert, H. Reitner, J. Wörheide, G. 2000, Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta 64, 16951703.Google Scholar
Borówka, R.K. Osadczuk, A. 2003, Zmiany hydrograficzne w obszarze ujściowym Odry podczas późnego glacjału i holocenu. Prace Komisji Paleogeografii Czwartorzędu PAU 1, 151155.Google Scholar
Borówka, R.K. Gonera, P. Kostrzewski, A. Nowaczyk, B. Zwoliński, Z. 1986, Stratigraphy of eolian deposits in Wolin Island and the surrounding area, North-West Poland. Boreas 15, 301309.Google Scholar
Borówka, R.K. Latałowa, M. Osadczuk, A. Święta, J. Witkowski, A. 2002, Palaeogeography and palaeoecology of Szczecin Lagoon. Greifswalder Geographische Arbeiten 27, C4 107113.Google Scholar
Borówka, R.K. Osadczuk, A. Witkowski, A. Wawrzyniak-Wydrowska, B. Duda, T. 2005, Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin – NW Poland. Quaternary International 130, 8796.Google Scholar
Borówka, R.K. Witkowski, A. Latałowa, M. Skowronek, A. Witkowski, A. Harff, J. Isemer, H.-J. 2009, Sedimentation of a marine deposit in the Szczecin Bay during the Littorina transgression. International Conference on Climate Change – The Environmental and Socio-economic Response in the Southern Baltic Region Conference Proceedings, BALTEX, Publication No. 42 8.Google Scholar
Boyden, R.C. 1972, Behaviour, survival and respiration of the cockles Cerastoderma edule and C. glaucum in air. Journal of the Marine Biological Association of the United Kingdom 52, 661680.Google Scholar
Brenner, W.W. 2005, Holocene environmental history of the Gotland Basin (Baltic Sea) – a micropaleontological model. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 227241.Google Scholar
Craig, H. 1965, The measurement of oxygen isotope paleotemperatures. Tongiorgi, V.E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratorio di Geologia Nucleare Pisa 161182.Google Scholar
Damušyte, A. 2009, Late Glacial and Holocene subfossil mollusk shell on the Lithuanian Baltic Sea coast. Baltica 22, 2 111122.Google Scholar
Davis, B.A.S. Brewer, S. Stevenson, A.C. Guiot, J. Contributors, Data 2003, The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.CrossRefGoogle Scholar
Emeis, K.-C.h. Struck, U. Blanz, T. Kohly, A. Vos, M. 2003, Salinity changes in the central Baltic Sea (NW Europe) over last 10,000 years. The Holocene 13, 411421.Google Scholar
Epstein, S.R. Buchsbaum, R. Lowenstam, H.A. Urey, H.C. 1953, Revised carbonate water isotopic temperature scale. Geological Society of America Bulletin 64, 13151326.Google Scholar
Eisma, D. Mook, W.G. Das, H.A. 1976, Shell characteristics, isotopic composition and trace-element contents of some euryhaline mollusks as indicator of salinity. Palaeogeography, Palaeoclimatology Palaeoecology 19, 3962.Google Scholar
Friedman, I. O'Neil, J.R. 1977, Compilation of stable isotope fractionation factors of geochemical interest. Fleischer, M. Data of Geochemistry. US Geological Survey Professional Paper 440-KK. 112.Google Scholar
Fröhlich, K. Grabczak, J. Różański, K. 1988, Deuterium and oxygen-18 in the Baltic Sea. Chemical Geology (Isotope Geoscience Section) 72, 7783.Google Scholar
Gierjatowicz, J.P. 2003, The influence of the North Atlantic Oscillation on water temperature at the Polish Balic Coast. Przegląd Geofizyczny 48, 4560(in Polish).Google Scholar
Girjatowicz, J.P. 2007, The North Atlantic Oscillation influence on the Odra river estuary hydrological conditions. Estuarine, Coastal and Shelf Science 74, 395402.Google Scholar
Girjatowicz, J.P. 2011, Effect of the North Atlantic Oscillation on water temperature in southern Baltic coastal lakes. Annales de Limnologie – International. Journal of Limnology 47, 7384.Google Scholar
Girjatowicz, J.P. Schmelzer, N. Olechwir, T. 2002, Climatological relationships between atmospheric circulation patterns and hydrological parameters in the Szczecin Lagoon. Czasopismo Geograficzne 73, 113122(in Polish).Google Scholar
Grossman, E.L. Ku, T.-L. 1986, Oxygen and carbon isotope fractionation in biogenic aragonote: temperature effects. Chemical Geology (Isotope Geoscience Section) 59, 5974.Google Scholar
Halas, S. Szaran, J. Niezgoda, H. 1997, Experimental determination of carbon isotope equilibrium fractionation between dissolved carbonate and carbon dioxide. Geochimica et Cosmochimica Acta 61, 26912695.Google Scholar
Harff, J. Meyer, M. 2011, Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the Southern Baltic. Harff, J. Björck, S. Hoth, P. The Baltic Sea Basin, Central and Eastern European Development Studies. Springer-Verlag Berlin Heidelberg 149164.Google Scholar
Harff, J. Endler, R. Emelyanov, E. Kotov, S. Leipe, Th. Moros, M. Olea, R. Tomczak, M. Witkowski, A. 2011, Late Quaternary climate variations reflected in Baltic Sea Sediments. Harff, J. Björck, S. Hoth, P. The Baltic Sea Basin, Central and Eastern European Development Studies. Springer-Verlag Berlin Heidelberg 99132.Google Scholar
Heikkilä, M. Seppä, H. 2010, Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison. Boreas 39, 705719.CrossRefGoogle Scholar
Heiri, O. Tinner, W. Lotter, A.F. 2004, Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. PNAS 101, 43 1528515288.Google Scholar
Jankowska, D. Witak, M. Huszczo, D. 2005, Paleoecological changes of the Vistula Lagoon in the last 7000 YBP based on diatom flora. Oceanological and Hydrobiological Studies 34, 4 109129.Google Scholar
Jöris, O. Weninger, B. 1998, Extension of the 14C calibration curve to ca. 40,000 cal BC by synchronizing Greenland 18O/16O ice core records and North Atlantic foraminifera profiles: a comparison with U/Th coral data. Radiocarbon 40, 495504.Google Scholar
Kabailiene, M. Vaikutiene, G. Damušyte, A. Rudnickaite, E. 2009, Post-glacial stratigraphy and paleoenvironment of the northern part of the Curonian Spit, Western Lithuania. Quaternary International 207, 6979.Google Scholar
Keith, M.L. Parker, R.H. 1965, Local variation of 13C and 18O contents of mollusk shells and the relatively minor temperature effect in marginal marine environments. Marine Geology 3, 1/2 115129.Google Scholar
Kim, S.-T. O'Neil, J.R. 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.Google Scholar
Lampe, R. 2005, Lateglacial and Holocene water-level variations along the NE German Balic Sea coast: review and new results. Quaternary International 133–134, 121136.Google Scholar
Leśniewska, M. Witak, M. 2008, Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part III). Oceanologicaland Hydrobiological Studies 37, 4 3552.Google Scholar
Majewski, A. 1974, Charakterystyka hydrologiczna Zatoki Pomorskiej. 115 pp.Wydawnictwa Komunikacji i Łączności Warszawa.Google Scholar
Marsz, A.A. 1999, The North Atlantic Oscillation and the thermal regime in the area of North-West Poland and the Polish Coast of the Baltic Sea. Przegląd Geograficzny 71, 225245(in Polish).Google Scholar
McCrea, J.M. 1950, On the isotopic chemistry of carbonates and paleotemperature scale. Journal of Chemical Physics 18, 849857.Google Scholar
Miettinen, A. Jansson, H. Alenius, T. Haggrén, G. 2007, Late Holocene sea level changes along the southern coast of Finland, Baltic Sea. Marine Geology 242, 2738.Google Scholar
Miotk-Szpiganowicz, G. Zachowicz, J. Uścinowicz, S. 2008, Review and reinterpretation of the pollen and diatom data from the deposits of the Southern Baltic lagoons. Polish Geological Institute Special Papers 23, 4570.Google Scholar
Molodkov, A. 1996, ESR dating of Lymnaea baltica and Cerastoderma glaucum from low Ancylus level and transgressive Litorina Sea deposits. Applied Radiation and Isotopes 47, 14271432.Google Scholar
Mook, W.G. 1971, Paleotemperatures and chlorinates from stable carbon and oxygen isotopes in shell carbonate. Palaeogeography, Palaeoclimatology, Palaeoecology 9, 245263.Google Scholar
Mook, W.G. Vogel, J.C. 1968, Isotopic equilibrium between shells and their environment. Science 159, 874875.Google Scholar
Mueller-Lupp, T. Erlenkeuser, H. Bauch, H.A. 2003, Seasonal and interannual variability of Siberian river discharge in the Laptev Sea inferred from stable isotopes in modern bivalves. Boreas 32, 292303.Google Scholar
Osadczuk, K. 2002, Evolution of the Świna barrier spit. Greifswalder Geographische Arbeiten 27, C4 119125.Google Scholar
Prusinkiewicz, Z. Noryśkiewicz, B. 1966, Problem of age of podzols on brown dunes of bay bars of river Świna in the light of a palynological analysis and dating by radiocarbon 14C (in Polish, English summary). Zeszyty Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu. Geografia 5, 7588.Google Scholar
Punning, J.-M. Martma, T. Kessel, H. Vaikmäe, R. 1988, The isotopic composition of oxygen and carbon in the subfossil mollusk shells of the Baltic Sea as an indicator of palaeosalinity. Boreas 17, 2731.Google Scholar
Reimann, T. Harff, J. Borówka, R. Osadczuk, K. Tsukamoto, S. Frechen, M. 2009, Luminescence dating of coastal sand deposits from the Baltic Sea – examples from the Darss-Zingst and Świna Gates. Witkowski, A. Harff, J. Isemer, H.-J. International Conference on Climate Change – The Environmental and Socio-economic Response in the Southern Baltic Region. Conference Proceedings, BALTEX," Publication No. 42 124, .Google Scholar
Rotnicki, K. 2009, Identyfikacja, wiek i przyczyny holoceńskich ingresji i regresji Bałtyku na polskim wybrzeżu środkowym. Wydawnictwo Słowińskiego Parku Narodowego Smołdzino.Google Scholar
Schöne, B.R. Pfeiffer, M. Pohlmann, T. Siegismund, F. 2005, A seasonally resolved bottom-water temperature record for the period AD 1866–2002 based on shells of Arctica islandica (Molluska, North Sea). International Journal of Climatology 25, 947962.Google Scholar
Seppä, H. Poska, A. 2004, Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research 61, 2231.Google Scholar
Simstisch, J. Erlenkeuser, H. Harms, I. Spielhagen, R.F. Stanovoy, V. 2005, Modern and Holocene hydrographic characteristics of the shallow Kara Sea shelf (Siberia) as reflected by stable isotopes of bivalves and benthic foraminifera. Boreas 34, 252263.Google Scholar
Skrzypek, G. Baranowska-Kącka, A. Keller-Sikora, A. Jędrysek, M.O. 2009, Analogous trends in pollen percentages and carbon stable isotope composition of Holocene peat – possible interpretation for palaeoclimatic studies. Review of Palaeobotany and Palynology 156, 507518.Google Scholar
Sohlenius, G. Emeis, K.-C.h. Andrén, E. Andrén, T. Kohly, A. 2001, Development of anoxia during the Holocene fresh–brackish water transition in the Baltic Sea. Marine Geology 177, 221242.Google Scholar
Uścinowicz, S. 2006, A relative sea level curve for the Polish Southern Baltic Sea. Quaternary International 145–146, 86105.Google Scholar
Widerlund, A. Andersson, P.S. 2006, Strontium isotopic composition of modern and Holocene mollusk shells as a palaeosalinity indicator for the Baltic Sea. Chemical Geology 232, 5466.Google Scholar
Widerlund, A. Andersson, P.S. 2011, Late Holocene freshening of the Baltic Sea derived from high-resolution strontium isotope analyses of mollusk shells. Geology 39, 2 187190.Google Scholar
Witak, M. 2002, Postglacial History of the Development of the Puck Lagoon (the Gulf of Gdańsk, Baltic Sea) Based on the Diatom Flora. Diatom Monographs 2. Koeltz Scientific Books Koenigstein.Google Scholar
Witak, M. Dunder, J. 2007, Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part II). Oceanological and Hydrobiological Studies 36, 3 320.Google Scholar
Witkowski, A. Latałowa, M. Borówka, R.K. Gregorowicz, P. Bąk, M. Osadczuk, A. Święta, J. Lutyńska, M. Wawrzyniak-Wydrowska, B. Woziński, R. 2004, Palaeoenvironmental changes in the area of the Szczecin Lagoon (the south western Baltic Sea) as recorded from diatoms. Studia Quaternaria 21, 153165.Google Scholar
Wołowicz, M. 1991, Geographic Differentiation of the Cardium glaucum Population Bruguiere (Bivalvia). Hypotheses Concerning the Derivation of the Species and Migration Routes (in Polish, English Summary). Wydawnictwo Uniwersytetu Gdańskiego Gdańsk.Google Scholar
Woziński, R. Wawrzyniak-Wydrowska, B. Borówka, R.K. 2003, The subfossil malakofauna from the Holocene deposits of the Szczecin Lagoon (in Polish, English summary). Borówka, R.K. Witkowski, A. Człowiek i środowisko przyrodnicze Pomorza Zachodniego (II Środowisko abiotyczne). Oficyna INPLUS Szczecin 113118.Google Scholar