Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T21:22:32.509Z Has data issue: false hasContentIssue false

Spatiotemporal patterns of pre-Columbian people in Amazonia

Published online by Cambridge University Press:  26 March 2019

Crystal N.H. McMichael*
Affiliation:
Ecosystem and Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 904 Science Park, 1098 XH Amsterdam, the Netherlands
Mark B. Bush
Affiliation:
Institute for Global Ecology, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida 32901, USA
*
*Corresponding author e-mail address [email protected]

Abstract

A current goal among many scientific disciplines is to incorporate data on past human land use and climate change into current global climate and vegetation models. Here, we used existing archaeological and paleoecological data to provide a spatiotemporal reconstruction of human history in Greater Amazonia over the Holocene. We used an ensemble distribution model based on a database of georeferenced 14C-dated material and environmental factors to predict the changes in spatial distributions of past human occupation sites. We ran these models for the precultivation (13,000–6000 yr ago), early cultivation (6000–2500 yr ago), and late cultivation (2500–500 yr ago) periods. The ensemble models suggest that people mostly inhabited the peripheral areas of Greater Amazonia and the eastern sections of the main Amazon River and its larger tributaries during the precultivation period. Human populations began growing exponentially through the early cultivation period, and people spread and expanded into the interior forests and along river channels in western Amazonia. Populations continued growing through the late cultivation period in these same regions. Our results suggest that many forests, particularly in the peripheral regions and riverine locations, may still be in recovery from disturbances that have occurred repeatedly through the Holocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida, F.O., Neves, E.G., 2014. The Polychrome tradition at the Upper Madeira River. In: Rostain, S. (Ed.), Antes de Orellana: Actas del 3rd Encuentro Internacional de Arqueologia Amazonica, p. 175182. Quito, Ecuador.Google Scholar
Aragão, L.E.O.C., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L., Saatchi, S., 2008. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 17791785.Google Scholar
Araújo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 4247.Google Scholar
Arroyo-Kalin, M., 2010. The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2, 473504.Google Scholar
Arroyo-Kalin, M., 2012. Slash-burn-and-churn: landscape history and crop cultivation in pre-Columbian Amazonia. Quaternary International 249, 418.Google Scholar
Arroyo-Kalin, M., 2018. Human niche construction and population growth in pre-Columbian Amazonia. Archaeology International 20, 122136.Google Scholar
Balée, W., 1989. The culture of Amazonian forests. In: Posey, D.A., Balée, W. (Eds.), Resource Management in Amazonia: Indigenous and Folk Strategies. New York Botanical Garden, New York, pp. 121.Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3, 327338.Google Scholar
Bivand, R., Keitt, T., Rowlingson, B., 2014. rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8-16. http://CRAN.R-project.org/package=rgdal (accessed June 2017).Google Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.Google Scholar
Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P., 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275, 7377.Google Scholar
Brando, P.M., Balch, J.K., Nepstad, D.C., Morton, D.C., Putz, F.E., Coe, M.T., Silvério, D., Macedo, M.N., Davidson, E.A., Nóbrega, C.C., 2014. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America 111, 63476352.Google Scholar
Breiman, L., 2001. Random forests. Machine Learning 45, 532.Google Scholar
Brugger, S.O., Gobet, E., van Leeuwen, J.F., Ledru, M.-P., Colombaroli, D., van der Knaap, W., Lombardo, U., Escobar-Torrez, K., Finsinger, W., Rodrigues, L., 2016. Long-term man–environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quaternary Science Reviews 132, 114128.Google Scholar
Buermann, W., Saatchi, S., Smith, T.B., Zutta, B.R., Chaves, J.A., Milá, B., Graham, C.H., 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography 35, 11601176.Google Scholar
Bush, M., Correa-Metrio, A., McMichael, C., Sully, S., Shadik, C., Valencia, B., Guilderson, T., Steinitz-Kannan, M., Overpeck, J., 2016. A 6900-year history of landscape modification by humans in lowland Amazonia. Quaternary Science Reviews 141, 5264.Google Scholar
Bush, M.B., McMichael, C.H., Piperno, D.R., Silman, M.R., Barlow, J.B., Peres, C.A., Power, M.J., Palace, M.W., 2015. Anthropogenic influence on Amazonian forests in prehistory: an ecological perspective. Journal of Biogeography 42, 22772288.Google Scholar
Bush, M.B., Piperno, D.R., Colinvaux, P.A., 1989. A 6000 year history of Amazonian maize cultivation. Nature 340, 303305.Google Scholar
Bush, M.B., Silman, M.R., 2007. Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Frontiers in Ecology and the Environment 5, 457465.Google Scholar
Bush, M.B., Silman, M.R., de Toledo, M.B., Listopad, C.R.S., Gosling, W.D., Williams, C., de Oliveira, P.E., Krisel, C., 2007. Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 209218.Google Scholar
Bush, M.B., Silman, M.R., McMichael, C., Saatchi, S., 2008. Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 17951802.Google Scholar
Carcaillet, C., Almquist, H., Asnong, H., Bradshaw, R., Carrion, J., Gaillard, M., Gajewski, K., Haas, J., Haberle, S., Hadorn, P., 2002. Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49, 845863.Google Scholar
Cardoso, M.F., Hurtt, G.C., Moore, B., Nobre, C.A., Prins, E.M., 2003. Projecting future fire activity in Amazonia. Global Change Biology 9, 656669.Google Scholar
Carson, J.F., Whitney, B.S., Mayle, F.E., Iriarte, J., Prümers, H., Soto, J.D., Watling, J., 2014. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proceedings of the National Academy of Sciences of the United States of America 111, 1049710502.Google Scholar
Chazdon, R.L., 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6, 5171.Google Scholar
Chazdon, R.L., Letcher, S.G., Van Breugel, M., Martínez-Ramos, M., Bongers, F., Finegan, B., 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 273289.Google Scholar
Clark, D.B., 1996. Abolishing virginity. Journal of Tropical Ecology 12, 735739.Google Scholar
Clark, D.B., Palmer, M.W., Clark, D.A., 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80, 26622675.Google Scholar
Clement, C.R., 1988. Domestication of the pejibaye palm (Bactris gasipaes): past and present. Advances in Economic Botany 6, 155174.Google Scholar
Clement, C.R., Denevan, W.M., Heckenberger, M.J., Junqueira, A.B., Neves, E.G., Teixeira, W.G., Woods, W.I., 2015. The domestication of Amazonia before European conquest. Proceedings of the Royal Society B: Biological Sciences 282, 20150813.Google Scholar
Cochrane, M.A., 2003. Fire science for rainforests. Nature 421, 913919.Google Scholar
Cochrane, M.A., 2011. The past, present, and future importance of fire in tropical rainforests. In: Bush, M.B., Flenley, J.R., Gosling, W.D. (Eds.), Tropical Responses to Climatic Change. Praxis, Chichester, UK, pp. 213240.Google Scholar
Denevan, W.M., 1996. A bluff model of riverine settlement in prehistoric Amazonia. Annals of the Association of American Geographers 86, 654681.Google Scholar
de Souza, J.G., Schaan, D.P., Robinson, M., Barbosa, A.D., Aragão, L.E.O.C., Marimon, B.H. Jr., Marimon, B.S., et al. , 2018. Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nature Communications 9, 1125.Google Scholar
Elith, J., Graham, C.H., 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32, 6677.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129151.Google Scholar
Elton, C.S., 1927. Animal Ecology. University of Chicago Press, Chicago.Google Scholar
Erickson, C.L., 2000. An artificial landscape-scale fishery in the Bolivian Amazon. Nature 408, 190193.Google Scholar
Erickson, C.L., 2008. Amazonia: the historical ecology of a domesticated landscape. In: Silverman, H., Isbell, W.H. (Eds.), The Handbook of South American Archaeology. Springer, New York, pp. 157183.Google Scholar
Eva, H.D., Colchester, M., Duivenvoorden, J., Hoogmoed, M., Junk, W., Kabat, P., Kruijt, B., Malhi, Y., Müller, J., Pereira, J., 2005. A Proposal for Defining the Geographical Boundaries of Amazonia. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
Fauset, S., Johnson, M.O., Gloor, M., Baker, T.R., Monteagudo M, A., Brienen, R.J.W., Feldpausch, T.R., et al. , 2015. Hyperdominance in Amazonian forest carbon cycling. Nature Communications 6, 6857.Google Scholar
Fisher, J.I., Hurtt, G.C., Thomas, R.Q., Chambers, J.Q., 2008. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecology Letters 11, 554563.Google Scholar
Food and Agriculture Organization of the United Nations, with /IIASA/ISRIC/ISS-CAS/JRC, 2009. Harmonized World Soil Database (version 1.1) http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed 11 June 2017).Google Scholar
Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics 29, 11891232.Google Scholar
Fuller, D.Q., Denham, T., Arroyo-Kalin, M., Lucas, L., Stevens, C.J., Qin, L., Allaby, R.G., Purugganan, M.D., 2014. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proceedings of the National Academy of Sciences of the United States of America 111, 61476152.Google Scholar
Glaser, B., Birk, J.J., 2012. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta 82, 3951.Google Scholar
Glaser, B., Haumaier, L., Guggenberger, G., Zech, W., 2001. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 3741.Google Scholar
Glaser, B., Woods, W.I., 2004. Amazonian Dark Earths: Explorations in Space and Time. Springer-Verlag, Berlin.Google Scholar
Goldberg, A., Mychajliw, A.M., Hadly, E.A., 2016. Post-invasion demography of prehistoric humans in South America. Nature 532, 232235.Google Scholar
Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165, 131137.Google Scholar
Haffer, J., 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity Conservation 6, 451476.Google Scholar
Hartshorn, G.S., 1978. Tree falls and tropical forest dynamics. In: Tomlinson, P.B., Zimmerman, M.H. (Eds.), Tropical Trees as Living Systems. Cambridge University Press, Cambridge, pp. 617638.Google Scholar
Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Monographs on Statistics and Applied Probability 43. Chapman and Hall, LondonGoogle Scholar
Heckenberger, M., Russell, J., Fausto, C., Toney, J., Schmidt, M., Pereira, E., Franchetto, B., Kuikuro, A., 2008. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon. Science 321, 12141217.Google Scholar
Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773785.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.Google Scholar
Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2012. dismo: Species Distribution Modeling. R package version 0.7-17. https://cran.r-project.org/web/packages/dismo/dismo.pdf (accessed June 2017).Google Scholar
Hijmans, R.J., van Etten, J., 2012. raster: Geographic Analysis and Modeling with raster Data. R package version, 1, 9-92. https://cran.r-project.org/web/packages/raster/raster.pdf (accessed June 2017).Google Scholar
Hilbert, L., Neves, E.G., Pugliese, F., Whitney, B.S., Shock, M., Veasey, E., Zimpel, C.A., Iriarte, J., 2017. Evidence for mid-Holocene rice domestication in the Americas. Nature Ecology & Evolution 1, 16931698.Google Scholar
Hubbell, S.P., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203, 12991309.Google Scholar
Hubbell, S.P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22, 415427.Google Scholar
Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-filled SRTM for the globe version 4. CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org. (accessed 1 October 2017).Google Scholar
Junk, W.J., Bayley, P.B., Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110127.Google Scholar
Körner, C., 2003. Slow in, rapid out—carbon flux studies and Kyoto targets. Science 300, 12421243.Google Scholar
Lehner, B., Verdin, K., Jarvis, A., 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions, American Geophysical Union 89, 9394.Google Scholar
Levis, C., Costa, F.R.C., Bongers, F., Peña-Claros, M., Clement, C.R., Junqueira, A.B., Neves, E.G., et al. , 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355, 925931.Google Scholar
Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2/3, 1822.Google Scholar
Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385393.Google Scholar
Lombardo, U., McMichael, C.N.H., Tamanaha, E., 2018. Mapping pre-Columbian land use in Amazonia. PAGES 26, 1415.Google Scholar
Lombardo, U., Prümers, H., 2010. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. Journal of Archaeological Science 37, 18751885.Google Scholar
Maezumi, S., Power, M., Mayle, F., McLauchlan, K., Iriarte, J., 2015. The effects of past climate variability on fire and vegetation in the cerrãdo savanna ecosystem of the Huanchaca Mesetta, Noel Kempff Mercado National Park, NE Bolivia. Climate of the Past Discussions 11, 135180.Google Scholar
Maezumi, S.Y., Whitney, B.S., Mayle, F.E., de Souza, J.G., Iriarte, J., 2018. Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quaternary International 488, 8194.Google Scholar
Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate change, deforestation, and the fate of the Amazon. Science 319, 169172.Google Scholar
Marengo, J.A., Druyan, L.M., Hastenranth, S., 1993. Observational and modelling studies of Amazonia interannual climate variability. Climatic Change 23, 267286.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15, 5969.Google Scholar
Mayle, F.E., Iriarte, J., 2014. Integrated palaeoecology and archaeology—a powerful approach for understanding pre-Columbian Amazonia. Journal of Archaeological Science 51, 5464.Google Scholar
McMichael, C.H., Bush, M.B., Piperno, D.R., Silman, M.R., Zimmerman, A.R., Anderson, C., 2012a. Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene 22, 131141.Google Scholar
McMichael, C.H., Bush, M.B., Silman, M.R., Piperno, D.R., Raczka, M., Lobato, L.C., Zimmerman, M., Hagen, S., Palace, M., 2013. Historical fire and bamboo dynamics in western Amazonia. Journal of Biogeography 40, 299309.Google Scholar
McMichael, C.H., Palace, M.W., Bush, M.B., Braswell, B., Hagen, S., Neves, E.G., Silman, M.R., Tamanaha, E.K., Czarnecki, C., 2014a. Predicting pre-Columbian anthropogenic soils in Amazonia. Proceedings of the Royal Society B: Biological Sciences 281, 20132475.Google Scholar
McMichael, C.H., Palace, M.W., Golightly, M., 2014b. Bamboo-dominated forests and pre-Columbian earthwork formations in south-western Amazonia. Journal of Biogeography 41, 17331745.Google Scholar
McMichael, C.H., Piperno, D.R., Bush, M.B., Silman, M.R., Zimmerman, A.R., Raczka, M.F., Lobato, L.C., 2012b. Sparse pre-Columbian human habitation in western Amazonia. Science 336, 14291431.Google Scholar
McMichael, C.N.H., Matthews-Bird, F., Farfan-Rios, W., Feeley, K.J., 2017. Ancient human disturbances may be skewing our understanding of Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 114, 522527.Google Scholar
Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 10581069.Google Scholar
Michczynski, A., Michczynska, D.J., 2006. The effect of PDF peaks' height increase during calibration of radiocarbon date sets. Geochronometria 25, 14.Google Scholar
Michczynska, D.J., Michczynski, A., Pazdur, A., 2007. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49, 799806.Google Scholar
Michczynska, D.J., Pazdur, A., 2004. Shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in the Late Glacial and Holocene. Radiocarbon 46, 733744.Google Scholar
Morrison, K.D., Hammer, E., Popova, L., Madella, M., Whitehouse, N., Gaillard, M.-J., LandCover6k Land-Use Group Members, 2018. Global-scale comparisons of human land use: developing shared terminology for land-use practices for global change. PAGES 26, 89.Google Scholar
Mosblech, N.A., Bush, M.B., Gosling, W.D., Hodell, D., Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B.G., Curtis, J., van Woesik, R., 2012. North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience 5, 817820.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162164.Google Scholar
Nepstad, D., Carvalho, G., Barros, A.C., Alencar, A., Capobianco, J.P., Bishop, J., Moutinho, P., Lefebvre, P., Silva, U.L.J., Prins, E., 2001. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management 154, 395407.Google Scholar
Nepstad, D., Lefebver, P., Silva, U.L.D., Tomasella, J., Schlesinger, P., Solorzano, L., Moutinho, P., Ray, D., Benito, J.G., 2004. Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Global Change Biology 10, 704717.Google Scholar
Neves, E., Petersen, J., 2006. Political economy and pre-Columbian landscape transformation in Central Amazonia. In: Balee, W., Erickson, C.L. (Eds.), Time and Complexity in Historical Ecology: Studies in the Neotropical Lowlands. Columbia University Press, New York, pp. 279310.Google Scholar
Neves, E.G., Guapindaia, V.L., Lima, H., Costa, B.L., Gomes, J., 2014. A tradição Pocó-Açutuba e os primeiros sinais visíveis de modificações de paisagens na calha do Amazonas. In: Rostain, S. (Ed.), Amazonía: Memorias de las Conferencias Magistrales del 3er Encuentro Internacional de Arqueología Amazónica. EIAA, Quito, Ecuador, pp. 137223.Google Scholar
Neves, E.G., Petersen, J.B., Bartone, R.N., Heckenberger, M.J., 2004. The timing of terra preta formation in the central Amazon: archaeological data from three sites. In: Glaser, B., Woods, W.I. (Eds.), Amazonian Dark Earths: Explorations in Space and Time. Springer, Berlin, pp. 125133.Google Scholar
Oliver, J.R., 2008. The archaeology of agriculture in ancient Amazonia. In: Silverman, H., Isbell, W.H. (Eds.), The Handbook of South American Archaeology. Springer, New York, pp. 185216.Google Scholar
Olson, D.M., Dinerstein, E., 2002. The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanic Gardens 89, 199224.Google Scholar
Palace, M.W., McMichael, C.N.H., Braswell, B.H., Hagen, S.C., Bush, M.B., Neves, E., Tamanaha, E., Herrick, C., Frolking, S., 2017. Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere 8, e02035.Google Scholar
Parnell, A., 2016. Bchron: Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-Parametric Phase Modelling. R package version 4.1. 1. https://cran.r-project.org/web/packages/Bchron/index.html (accessed June 2017).Google Scholar
Pärssinen, M., Ranzi, A., Saunaluoma, S., Siiriäinen, A., 2003. Geometrically patterned ancient earthworks in the Rio Branco region of Acre, Brazil: new evidence of ancient chiefdom formations in Amazonian interfluvial terra firme environment. In: Pärssinen, M., Korpisaari, A. (Eds.), Western Amazonia – Amazonia Ocidental. Renvall Institute for Area and Cultural Studies, University of Helsinki, Helsinki, pp. 97133.Google Scholar
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.Google Scholar
Piperno, D.R., 2011. The origins of plant cultivation and domestication in the New World tropics. Current Anthropology 52, S453S470.Google Scholar
Piperno, D.R., Becker, P., 1996. Vegetational history of a site in the Central Amazon basin derived from phytolith and charcoal records from natural soils. Quaternary Research 45, 202209.Google Scholar
Power, M., Whitney, B., Mayle, F., Neves, D., de Boer, E., Maclean, K., 2016. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150165.Google Scholar
Ramos-Neto, M.B., Pivello, V.R., 2000. Lightning fires in a Brazilian savanna national park: rethinking management strategies. Environmental Management 26, 675684.Google Scholar
Ray, D., Nepstad, D., Moutinho, P., 2005. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecological Applications 15, 16641678.Google Scholar
R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Ridgeway, G., 2015. The gbm Package: Generalized Boosted Regression Models (Documentation on the R Package ‘gbm’, version 1.6–3). http://www.mirrorservice.org/sites/lib.stat.cmu.edu/R/CRAN/doc/packages/gbm.pdf (accessed March 2017).Google Scholar
Roosevelt, A.C., 1991. Moundbuilders of the Amazon: Geophysical Archaeology on Marajó Island, Brazil. Academic Press, San Diego, CA.Google Scholar
Roosevelt, A.C., 2013. The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene 4, 6987.Google Scholar
Roosevelt, A.C., da Costa, M.L., Machado, C.L., Michab, M., Mercier, N., Valladas, H., Feathers, J., et al. , 1996. Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272, 373384.Google Scholar
Saldarriaga, J.G., West, D.C., 1986. Holocene fires in the northern Amazon basin. Quaternary Research 26, 358366.Google Scholar
Sanford, R.L. Jr., Horn, S.P., 2000. Holocene rain-forest wilderness: a Neotropical perspective on humans as an exotic, invasive species. In: Cole, D., Mccool, S.F. (Eds.), Wilderness Science in a Time of Change. U.S. Department of Agriculture, Forest Service Proceedings RMRS-P-15-VOL-3. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 168173.Google Scholar
Santos, G.M., Gomes, P.R.S., Anjos, R.M., Cordeiro, R.C., Turcq, B.J., Sifeddine, A., di Tada, M.L., Cresswell, R.G., Fifield, L.K., 2000. 14C AMS dating of fires in the central Amazon rain forest. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172, 761766.Google Scholar
Saunaluoma, S., 2010. Pre-Columbian earthworks in the Riberalta region of the Bolivian Amazon. Amazônica-Revista de Antropologia 2, 104138.Google Scholar
Schaan, D., 2010. Long-term human induced impacts on Marajó Island landscapes, Amazon estuary. Diversity 2, 182206.Google Scholar
Schaan, D., Pärssinen, M., Saunaluoma, S., Ranzi, A., Bueno, M., Barbosa, A., 2012. New radiometric dates for precolumbian (2000–700 B.P.) earthworks in western Amazonia, Brazil. Journal of Field Archaeology 37, 132142.Google Scholar
Schaan, D.P., 2004. The Camutins Chiefdom: Rise and Development of Social Complexity on Marajó Island, Brazilian Amazon. University of Pittsburgh, Pittsburgh, PA.Google Scholar
Schmitt, S., Pouteau, R., Justeau, D., Boissieu, F., Birnbaum, P., Golding, N., 2017. ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. Methods in Ecology and Evolution 8, 17951803.Google Scholar
Söderström, M., Eriksson, J., Isendahl, C., Schaan, D.P., Stenborg, P., Rebellato, L., Piikki, K., 2016. Sensor mapping of Amazonian Dark Earths in deforested croplands. Geoderma 281, 5868.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Spurk, M., 2006. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R., 2005. CALIB 5.0. http://calib.org/calib/ (accessed 17 Oct 2017).Google Scholar
Terborgh, J., 1992. Diversity and the Tropical Rain Forest. Freeman, New York.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369373.Google Scholar
Tuomisto, H., Ruokolainen, K., Kalliola, R., Linna, A., Danjoy, W., Rodriguez, Z., 1995. Dissecting Amazonian biodiversity. Science 269, 6366.Google Scholar
Tuomisto, H., Ruokolainen, K., Yli-Halla, M., 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241244.Google Scholar
van Breukelen, M.R., Vonhof, H.B., Hellstrom, J.C., Wester, W.C.G., Kroon, D., 2008. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth and Planetary Science Letters 275, 5460.Google Scholar
Vieira, S., de Camargo, P.B., Selhorst, D., da Silva, R., Hutyra, L., Chambers, J.Q., Brown, I., et al. , 2004. Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140, 468479.Google Scholar
Watling, J., Iriarte, J., Mayle, F.E., Schaan, D., Pessenda, L.C.R., Loader, N.J., Street-Perrott, F.A., Dickau, R.E., Damasceno, A., Ranzi, A., 2017. Impact of pre-Columbian “geoglyph” builders on Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America 114, 18681873.Google Scholar
Whittaker, R.H., Levin, S.A., Root, R.B., 1973. Niche, habitat, and ecotope. American Naturalist 107, 321338.Google Scholar
Williams, A.N., 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39, 578589.Google Scholar
Wilson, M.F.J., O'Connell, B., Brown, C., Guinan, J.C., Grehan, A.J., 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy 30, 335.Google Scholar
WinklerPrins, A.M.G.A., Aldrich, S.P., 2010. Locating Amazonian Dark Earths: creating an interactive GIS of known locations. Journal of Latin American Geography 9, 3350.Google Scholar
Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., Guisan, A., 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763773.Google Scholar
Wood, S.N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 336.Google Scholar
Wright, S.J., 2005. Tropical forests in a changing environment. Trends in Ecology & Evolution 20, 553560.Google Scholar
Zhao, M., Running, S.W., 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940943.Google Scholar
Supplementary material: File

McMichael and Bush supplementary material

McMichael and Bush supplementary material 1

Download McMichael and Bush supplementary material(File)
File 3 MB