Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T18:56:54.734Z Has data issue: false hasContentIssue false

Solar Influences on Holocene Climatic Changes Illustrated by Correlations between Past Lake-Level Fluctuations and the Atmospheric 14C Record

Published online by Cambridge University Press:  20 January 2017

Michel Magny*
Affiliation:
Laboratoire de Chrono-Ecologie, UPR 7557 du CNRS, U.F.R. Sciences et Techniques, 16, route de Gray, 25030 Besançon, France

Abstract

Chronological correlations established at different time scales among the lake-level fluctuations in the Jura and French Subalpine ranges, glacier movements in the Swiss and Austrian Alps, and the atmospheric 14C record during the last 7 millennia show coincidences between lake-level rises, glacier advances, and high 14C production and vice versa. These correspondences suggest that the short-term 14C variations may be an empirical indicator of Holocene palaeoclimates and argue for possible origins of Holocene climatic oscillations: (1) The varying solar activity refers to secular climatic oscillations and to major climatic deteriorations showing a ca. 2300-yr periodicity. (2) A question is raised about a relationship between the earth's magnetic field and climate. First, the weak-strength periods of the earth's dipole magnetic field (between 3800 and ca. 2500 B.C.) coincide with higher climate variability, and vice versa. Second, the ca. 2300-yr periods revealed by the 14C record and also by the major climatic deteriorations re. corded in Jurassian lakes (ca. 1500 A.D., ca. 800 B.C., and ca. 3500 B.C.) coincide with the ca. 2300-yr periods revealed by the earth's nondipole geomagnetic field. The present warming induced by anthropogenic factors should be intensified during the next few centuries by natural factors of climate evolution.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E. Hamelin, B. Fairbanks, R. G., and Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectromotric U-Th ages from Barbados corals. Nature 345, 405410.Google Scholar
Berger, A. (1979). Insolation signatures of quaternary climatic changes. Il Nuovo Cimento 2(C), 6387.CrossRefGoogle Scholar
Berthelier, J. J. (1981). La magnétosphère, interface entre le soleil et la basse atmosphere. In “Sun and Climate” (Handel, R., Ed.), pp. 189209. Actes des Journées d’Etudes Internationales, Toulouse 30 IX— 3X 1980.Google Scholar
Borel, J.-L. Brochier, J.-L., and Lundstrom-Baudais, K. (1985). Water-level fluctuations of the lake of Paladru (Isère, France) in the Xth and Xlth centuries AD. Ecologia Mediterranea 11(1), 179183.CrossRefGoogle Scholar
Bortenschlager, S. (1977). l/rsachen und Ausmass postglazialer Waldgrenzschwankungen in den Ostalpen. In “Dendrochronologie und postglaziale Klimaschwankungen in Europa” (Frenzel, B., Ed.), pp. 260266. Steiner Verlag, Wiesbaden.Google Scholar
Brochier, J. L. (1986). “La baie d’Auvernier, lac de Neuchâtel, Suisse: Évolution patéolimnologique et habitats préhistoriques d’apres l tude des séquences sédimentaires.” Manuscript. Musée Cantonal d’Archéologie de Neuchatel, Switzerland.Google Scholar
Burga, C. (1979). Postglaziale Klimaschwankungen in Pollendiagram-men der Schweiz. Vierteljahrschrift der Naturforschenden Gesell-schafi in Zurich 124, 265283.Google Scholar
Burga, C. (1987a). Vegetationsgeschichte seit der Späteiszeit. Geographica Helvetica 2, 7180.Google Scholar
Burga, C. (1987b). Literaturbesprechung (Röthlisberger, F. (1986). 10,000 Jahre Gletschergeschichte der Erde. Sauerländer Aarau, 384 pp.). Geographica Helvetica 2, 126.Google Scholar
Burga, C. (1988). Swiss vegetation history during the last 18,000 years. New Phytologist 110, 581602.CrossRefGoogle Scholar
Damon, P. E., and Jirikowic, J. L. (in press). Radiocarbon evidence for low frequency solar oscillation. In “Rare Nuclear Decay Processes” (Povinec, P., Ed.).Google Scholar
Damon, P. E., and Linick, T. W. (1986). Geomagnetic-heliomagnetic modulation of atmospheric radiocarbon production. Radiocarbon 28(2A), 266278.Google Scholar
Damon, P. E. Cheng, S., and Linick, T. W. (1989). Fine and hyperfine structure in the spectrum of secular variations of atmospheric 14C. Radiocarbon 31(3), 704718.CrossRefGoogle Scholar
Dansgaard, W. Jonnsen, S. J. Clausen, H. B. Dahl-Jensen, D. Gun-destrup, N. Hammer, C. U., and Oeschger, H. (1984). North Atlantic climatic oscillations revealed by deep Greenland ice cores. In “Climate Processes and Climate Sensitivity” (Hansen, J. E. and Takahashi, T., Eds.), pp. 228298. American Geophysical Union, Washington.Google Scholar
Denton, G. H., and Karlen, W. (1973). Holocene climatic variations: Their pattern and possible cause. Quaternary Research 3, 155205.CrossRefGoogle Scholar
Digerfeldt, G. (1986). Studies on past lake-level fluctuations. In “Handbook of Holocene Palaeoecology and Palaeohydrology” (Ber-glund, B., Ed.), pp. 127143. Wiley, New York.Google Scholar
Eddy, J. A. (1977). Climate and the changing sun. Climatic Change 1, 171190.CrossRefGoogle Scholar
Flohn, H., and Fantechi, R. (1984). “The climate of Europe: Past, Present and Future.” Reidel, Dordrecht.Google Scholar
Gamper, M., and Suter, J. (1982). Postglaziale Klimasgeschichte der Schweizer Alpen. Geographica Helvetica 2, 105114.CrossRefGoogle Scholar
Guiot, J., and Pons, A. (1986). Une méthode de reconstruction quantitative du climat à partir de chroniques pollenanalytiques: Le climat de la France depuis 15,000 ans. Comptes Rendus a l’Académie des Sciences 302, Serie II, N°14, 911916.Google Scholar
Heitz, C. (1975). “Vegetationsentwicklung und Waldgrenzschwankungen des Spät- und Postglazials im Oberhalbstein (Graubünden/Schweiz) mit besonderer berücksichtigung der Fichteneinwanderung.” Beiträge zur geobotanischen Landesaufnahme der Schweiz 55.Google Scholar
Holzhauser, H. (1984). “Zur Geschichte der Aletschgletscher und des Fieschergletschers.” Physische Geographie 13, Zurich.Google Scholar
Holzhauser, H. (1987). Betrachtungen zur Gletschergeschichte des Postglazials. Geographica Helvetica 2, 8188.Google Scholar
Imbrie, J. (1985). The future of paleoclimatology. In “Paleoclimate Analysis and Modeling” (Hecht, A. D., Ed.), pp. 423432. Wiley, New York. Google Scholar
Kullman, L. (1988). Holocene history of the forest-alpine tundra ecotone in the Scandes mountains (central Sweden). New Phytologist 108, 101110.CrossRefGoogle ScholarPubMed
Lund, S. P., and Banerjee, S. K. (1985). Late Quaternary paleomagnetic field secular variation from two Minnesota lakes. Journal of Geophysical Research 90(B1), 803825.CrossRefGoogle Scholar
Magny, M. (1991). “Une approche paléoclimatique de l’Holocéne: Les fluctuations des lacs du Jura et des Alpes du Nord françaises.” The-sis, Laboratoire de Chrono-Ecologie, Besançon.Google Scholar
Mayr, F. (1964). Untersuchungen über Ausmass und Folgen der Klima-und Gletscherschwankungen seit dem Beginn der postglazialen Wärmezeit. Zeilschrift für Geomorphologie, NF 8(3), 257285.Google Scholar
Mayr, F. (1968). Postglazial glacier fluctuations and correlative phenomena in the Stubai Mountains, Eastern Alps, Tyrol. INQUA 1965, University of Colorado Studies Series in Earth Science 7, 167177.Google Scholar
Mörner, N. A. (1984). Planetary, solar, atmospheric, hydrospheric and endogene processes as origin of climatic changes on the earth. In “Climatic Changes on a Yearly to Millennial Basis” (Mörner, N. A. and Karlén, W., Eds.), pp. 483507. Reidel.CrossRefGoogle Scholar
Patzelt, G. (1973). Die postglazialen Gletscher- und Klimaschwankun-gen in der Venedigergruppe (Hohe Tauern, Ostalpen). Zeitschrift für Geomorphologie, NF 16, 2572.Google Scholar
Patzelt, G. (1977). Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. In “Dendrochronologie und post-glaziale Klimaschwankungen in Europa” (Frenzel, B., Ed.), pp. 248259. Wiesbaden.Google Scholar
Pérequin, P. (Ed.) (1989). “Les sites httoraux néolithiques de Clair-vaux-les-Lacs, Jura. II. Le Néolithique moyen.” Maison des Sciences de l’Homme, Paris.Google Scholar
Pittock, A. B. (1978). A critical look at long-term sun-weather relationship. Reviews of Geophysics and Space Physics 16, 400420.Google Scholar
Raisbeck, G. Yiou, F. Jouzel, J., and Petit, J. R. (1990). 10Be and δ2H in polar ice cores as a probe of the solar variability’s influence on climate. Philosophical Transactions of the Royal Society of London A 330, 463470.Google Scholar
Röthlisberger, F. (1986). “10,000 Jahre Gletschergeschichte der Erde.” Verlag Sauerländer, Aarau.Google Scholar
Röthlisberger, F. Haas, P. Holzhauser, H. Keller, W. Bircher, W., and Renner, F. (1980). Holocene climatic fluctuations—Radiocarbon dating of fossil soils and woods from moraines and glaciers in the Alps. Geographica Helvetica 35, 2152.Google Scholar
Schindler, C. (1981). Geologische Unterlagen zur Beurteilung archäol-ogischer Probleme in den Seeufergebieten. Helvetia Archaeologica 12, 7188.Google Scholar
Schneider, J. Gutshcer, D. Etter, H., and Hanser, J. (1982). “Der Münsterhof in Zürich. Schweizerische Beiträge zur Kulturgeschichte und Archäologie des Mittelalters.” Bd 9 und 10. Schweizerische Bur-genverein.Google Scholar
Starkel, L. (1991). Long-distance Correlation of Fluvial Events in the Temperate Zone. In “Temperate Palaeohydrology” (Starkel, L. Gregory, K. J., and Thornes, J. B., Eds.), pp. 473495. Wiley, New York.Google Scholar
Stuiver, M. (1965). Carbon 14 content of 18th and 19th century wood: Variations correlated with sunspot activity. Science 149, 533535.CrossRefGoogle Scholar
Stuiver, M. (1980). Solar variability and climatic change during the current millennium. Nature 286, 868871.Google Scholar
Stuiver, M. (1990). Timescales and telltale corals. Nature 345, 387388.Google Scholar
Stuiver, M., and Kra, R. S. (Eds) (1986). Calibration issue. Interna-tional 14C conference, 12th, Proc. Radiocarbon 28(2B), 8051030.Google Scholar
Stuiver, M., and Quay, P. D. (1980). Changes in atmospheric Carbon 14 attributed to a variable Sun. Science 207, 1119.Google Scholar
Stuiver, M. Braziunas, T. F. Becker, B., and Kromer, B. (1991). Climatic, Solar, Oceanic and Geomagnetic Influences on Late-Glacial and Holocene Atmospheric 14C/12C Change. Quaternary Research 35, 124.CrossRefGoogle Scholar
Wigley, T. M. L., and Kelly, P. M. (1990). Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society of London A 330, 547560.Google Scholar
Zoller, H. (1967). Postglaziale Klimaschwankungen und ihr Einfluss auf die Waldentwicklung Mitteleuropas einschliesslich der Alpen. Be-richte der Deutschen Botanischen Gesellschaft 80(10), 690670.Google Scholar
Zoller, H. (1975). Les oscillations du climat et des glaciers pendant le Tardi- et le Postglaciaire dans les Alpes de la Suisse. In “Approche écologique de l’Homme fossile” (LaviHe, H. and Renault-Miskovsky, J., Eds.), pp. 297301. Supplément du Bulletin de l’Asso-ciation Française pour l’Etude du Quaternaire.Google Scholar
Zoller, H. (1977). Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen. In “Dendrochronologie und Klimaschwankungen in Europa” (Frenzel, B., Ed.), pp. 271281. Steiner Verlag, Wiesbaden.Google Scholar
Zoller, H. Schindler, C, and Röthlisberger, F. (1966). Postglaziale Gletscherstände und Klimaschwankungen im Gotthardmassiv und Vorderrheingebiet. Verhandlungen der Naturforschenden Gesell-schaft in Basel 77(2), 97164.Google Scholar