Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T21:35:22.607Z Has data issue: false hasContentIssue false

Site formation and chronology of the New Paleolithic Site Sima de Las Palomas de Teba, Southern Spain

Published online by Cambridge University Press:  20 January 2017

Martin Kehl*
Affiliation:
Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany
Christoph Burow
Affiliation:
Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany
Pedro Cantalejo
Affiliation:
Investigador Doctor, Grupo PAI-HUM-440, Spain
Salvador Domínguez-Bella
Affiliation:
Área de Cristalografía y Mineralogía, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Campus Río San Pedro, Puerto Real, Cádiz, Spain
Juan José Durán
Affiliation:
Instituto Geológico y Minero de España (IGME), C/ Ríos Rosas, 23, 28003 Madrid, Spain
Felix Henselowsky
Affiliation:
Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany
Nicole Klasen
Affiliation:
Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany
Jörg Linstädter
Affiliation:
Institute of Prehistoric Archaeology, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany
Javier Medianero
Affiliation:
Investigador Doctor, Grupo PAI-HUM-440, Spain
Andreas Pastoors
Affiliation:
Stiftung Neanderthal Museum, Talstrasse 300, 40822 Mettmann, Germany
José Ramos
Affiliation:
Área de Prehistoria, Departamento de Historia, Geografía y Filosofía, Facultad de Filosofía y Letras, Universidad de Cádiz, Avda Gómez Ulla, s/n, 11003 Cádiz, Spain
Klaus Reicherter
Affiliation:
Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
Christoph Schmidt
Affiliation:
Institute of Geography, University of Cologne, Albertus Magnus Platz, 50923 Köln, Germany Chair of Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany
Gerd-Christian Weniger
Affiliation:
Stiftung Neanderthal Museum, Talstrasse 300, 40822 Mettmann, Germany
*
Corresponding author. E-mail address:[email protected] (M. Kehl), [email protected] (C. Burow), [email protected] (P. Cantalejo), [email protected] (S. Domínguez-Bella), [email protected] (J.J. Durán), [email protected] (F. Henselowsky), [email protected] (N. Klasen), [email protected] (J. Linstädter), [email protected] (J. Medianero), [email protected] (A. Pastoors), [email protected] (J. Ramos), [email protected] (K. Reicherter), [email protected] (C. Schmidt), [email protected] (G.-C.Weniger).

Abstract

The newly identified Paleolithic site Sima de Las Palomas de Teba hosts an almost seven-m-thick sediment profile investigated here to elucidate the rock shelter's chronostratigraphy and formation processes. At its base, the sediment sequence contains rich archeological deposits recording intensive occupation by Neanderthals. Luminescence provides a terminus ante quem of 39.4 ± 2.6 ka or 44.9 ± 4.1 ka (OSL) and 51.4 ± 8.4 ka (TL). This occupation ended with a rockfall event followed by accumulation of archeologically sterile sediments. These were covered by sediments containing few Middle Paleolithic artifacts, which either indicate ephemeral occupation by Neanderthals or reworking as suggested by micromorphological features. Above this unit, scattered lithic artifacts of undiagnostic character may represent undefined Paleolithic occupations. Sediment burial ages between about 23.0 ± 1.5 ka (OSL) and 40.5 ± 3.4 ka (pIRIR) provide an Upper Paleolithic chronology for sediments deposited above the rockfall. Finally, a dung-bearing Holocene layer in the uppermost part of the sequence contains a fragment of a human mandible dated to 4032 ± 39 14C yr BP. Overall, the sequence represents an important new site for studying the end of Neanderthal occupation in southern Spain.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., Aitken, M. (1998). Dose-rate conversion factors: update. Ancient TL 16, 3750.Google Scholar
Angelucci, D. (2010). The recognition and description of knapped lithic artifacts in thin section. Geoarchaeology 25, 220232.Google Scholar
Angelucci, D.E., Zilhão, J. ("o, 2009). Stratigraphy and formation processes of the upper Pleistocene deposit at Gruta da Oliveira, Almonda karstic system, Torres Novas, Portugal. Geoarchaeology 24, 3 277310.Google Scholar
Atlas Climático Ibérico, (2011). Temperatura del aire y precipitación (1971–2000). Agencia Estatal de Meteorología de España and Departamento de Meteorologia e Clima, Instituto de Meteorologia de Portugal 79 Google Scholar
Auclair, M., Lamothe, M., Hout, S. (2003). Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37, 487492.Google Scholar
Barroso, C., De Lumley, H. (2006). La Grotte du Boquete de Zafarraya. Málaga, Consejería de Cultura, Junta de Andalucía, Sevilla.Google Scholar
Bar-Yosef, O., Van Peer, Ph. (2009). The chaîne opératoire approach in Middle Paleolithic Archaeology. Current Anthropology 50, 103131.CrossRefGoogle Scholar
Bertran, P., Texier, J.P. (1999). Facies and microfacies of slope deposits. Catena 35, 99121.Google Scholar
Boëda, E. ("da, 1994). )Le concept Levallois: variabilité des méthodes. C.N.R.S., Paris.(Monographie du CRA, 9)Google Scholar
Boëda, E., Geneste, J.M., Meignen, L. ("da et al., 1991). Identification des chaînes opératoires lithiques du Paléolithiques ancien et moyen. Paléo 2, 4380.CrossRefGoogle Scholar
Bordes, F. (1961). Typologie du Paléolithique ancien et moyen. Delmas, Bordeaux.Google Scholar
Bosinski, G. (1967). Die mittelpaläolithischen Funde im westlichen Mitteleuropa. Böhlau, Köln, Graz.(Fundamenta A 4)Google Scholar
Bowman, S., Huntley, D. (1984). A new proposal for the expression of alpha efficiency in TL dating. Ancient TL 2, 68.Google Scholar
Brochier, J.E. (2002). Les sédiments anthropiques. Méthods d'études er perspectives. Géologie de la Préhistoire: méthodes, techniques, applications, Paris, Miskovsky J.-C. dir., GEOPRE éditions 453477.Google Scholar
Bronk Ramsey, C. (2013). OxCal 4.2 Manual.https://c14.arch.ox.ac.uk/oxcalhelp/hlp_contents.htmlGoogle Scholar
Brown, N.D., Rhodes, E.J., Antinao, J.L., McDonald, E.V. (2015). Single-grain post-IR IRSL signals of K-feldspars from alluvial fan deposits in Baja California Sur, Mexico. Quaternary International 362, 132138.Google Scholar
Buylaert, J.P., Murray, A.S., Thomsen, K.J., Jain, M. (2009). Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44, 560565.CrossRefGoogle Scholar
Buylaert, J.P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R. (2012). A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Buylaert, J.P., Murray, A.S., Gebhardt, A.C., Sohbati, R., Ohlendorf, C., Thiel, C., Wastegård, S., Zolitschka, B., (2013). Luminescence dating of the PASADO core 5022-1D from Laguna Potrok Aike (Argentina) using IRSL signals from feldspar. Quaternary Science ReviewsThe PASADO Science Team 71, 7080.CrossRefGoogle Scholar
Canti, M.G. (1999). The production and preservation of faecal spherulites: animals, environment and taphonomy. Journal of Archaeological Science 26, 251258.Google Scholar
Canti, M.G. (2003). Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena 54, 339361.CrossRefGoogle Scholar
Colarossi, D., Duller, G.A.T., Roberts, H.M., Tooth, S., Lyons, R. (2016). Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quaternary Geochronology 30, 233238.Google Scholar
Cortés, M. (2011). Territorio y espacio. Paleolítico Medio y Superior en Andalucía. Un estado de la cuestión. Memorial Luis Siret. I Congreso de Prehistoria de Andalucía Junta de Andalucía, Sevilla.163172.Google Scholar
Cortéz-Sánchez, M., Morales-Muñiz, A., Simón-Vallejo, M.D., Bergadà-Zapata, M.M., Delgado-Huertas, A., López-Garcia, P., López-Sáez, J.A., Lozano-Francisco, M.C., Riquelme-Cantal, J.A., Roselló,-Izquierdo, E., Sánchez-Marco, A., Vera-Peláez, J.L. (2008). Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quaternary Science Reviews 27, 21762193.Google Scholar
Courty, M.A. (2001). Microfacies analysis assisting archaeological stratigraphy.Goldberg, P., Holliday, V.T., Ferring, C.R. Earth Sciences and Archaeology Kluwer Academic, New York.205239.Google Scholar
Courty, M.A., Vallverdu, J. (2001). The microstratigraphic record of abrupt climate changes in cave sediments in the western Mediterranean. Geoarchaeology 16, 467500.Google Scholar
Courty, M.A., Goldberg, P., Macphail, R.I. (1989). Soils and Micromorphology in Archaeology. Cambridge University Press, Cambridge, UK.Google Scholar
Delagnes, A., Meignen, L. (2006). Diversity of lithic production systems during the Middle Paleolithic in France: are there any chronological trends?.Hovers, E., Kuhn, S.L. Transitions before the transition Evolution and stability in the Middle Paleolithic and Middle Stone Age Springer, New York.85108.CrossRefGoogle Scholar
Domínguez-Bella, S., Ramos Muñoz, J., Weniger, G.-C., Cabello, L. (2014). Materias primas líticas. Estudios arqueomineralógicos y geoarqueológicos.Weniger, G.-C., Ramos, J. Sima de las Palomas de Teba (Málaga) Resultados de las investigaciones 1182 2011–2014 Ediciones Pinsapar, Málaga.145153.Google Scholar
Duller, G.A.T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.Google Scholar
Durand, N., Monger, H.C., Canti, M.G. (2010). Calcium carbonate features.Stoops, G., Marcelino, V., Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, Amsterdam.149194.Google Scholar
Espigares, M.P., Ros-Montoya, S., Riquelme, J.A., Palmquvist, P., Martínez, B. (2014). Paleontología de las Sima de Las Palomas de Teba.Weniger, G.-C., Ramos, J. Sima de las Palomas de Teba (Málaga). Resultados de las investigaciones 2011–2014 Ediciones Pinsapar, Málaga.7991.Google Scholar
Estévez, J., Villagran, X.S., Balbo, A.L., Hardy, K. (2014). Microtaphonomy in archaeological sites: the use of soil micromorphology to better understand bone taphonomy in archaeological contexts. Quaternary International 330, 39.Google Scholar
Fernández, S., Fuentes, N., Carrión, J.S., González-Sampériz, P., Montoya, E., Gil, G., Vega-Toscano, G., Riquelme, J.A. ("ndez et al., 2007). The Holocene and Upper Pleistocene pollen sequence of Carihuela Cave, southern Spain. Geobios 40, 1 7590.Google Scholar
Finlayson, C., Pachero, F.G., Rodriguez-Vidal, J., Fa, D.A., Gutierrez Lopez, J.M., Santiago Perez, A., Finlayson, G., Allue, E., Preysler, J.B., Caceres, I., Carrion, J.S., Fernández Jalvo, Y., Gled-Owen, C.P., Jimenez Espejo, F.J., Lopez, P., Lopez Saez, J.A., Riquelme Cantal, J.A., Sanchez Marco, A., Guzman, F.G., Brown, K., Fuentes, N., Valarino, C.A., Villalpando, A., Stringer, C.B., Ruiz, F.M., Sakamoto, T. (2006). Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850853.Google Scholar
Galbraith, R.F. (2003). A simple homogeneity test for estimates of dose obtained using OSL. Ancient TL 21, 7577.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multi-grains of Quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
Galván, B., Hernández, C.M., Mallol, C., Mercier, N., Sistiaga, A., Soler, V. ("n et al., 2014). New evidence of early Neanderthal disappearance in the Iberian Peninsula. Journal of Human Evolution 75, 1627.Google Scholar
Giles Pacheco, F., Gutierrez López, J., Santiago Perez, A., Mata, E. (1998). Avance al estudio sobre poblamiento del Paleolítico superior en la cuenca media y alta del Río Guadelete (Cádiz).Sanchidrián, J., Simón Vallejo, M. Las Culturas del Pleistoceno Superior en Andalucía Patronato de la Cueva de Nerja, Malaga.111140.Google Scholar
Goldberg, P., Macphail, R.I. (2006). Practical and Theoretical Geoarchaeology. Blackwell, (454 pp.)Google Scholar
Goldberg, P., Miller, C.E., Schiegl, S., Ligouis, B., Berna, F., Conard, N.J., Wadley, L. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences 1, 95122.Google Scholar
Guérin, G., Discamps, E., Lahaye, C., Mercier, N., Guibert, P., Turq, A., Dibble, H.L., McPherron, S.P., Sandgathe, D., Goldberg, P., Jain, M., Thomsen, K., Patou-Mathis, M., Castel, J.-C., Soulier, M.-C. (2012). Multi-method (TL and OSL), multi-material (quartz and flint) dating of the Mousterian site of Roc de Marsal (Dordogne, France): correlating Neanderthal occupations with the climatic variability of MIS 5–3. Journal of Archaeological Science 39, 30713084.Google Scholar
Guérin, G., Frouin, M., Talamo, S., Aldeias, V., Bruxelles, L., Chiotti, L., Dibble, H.L., Goldberg, P., Hublin, J.-J., Jain, M., Lahaye, C., Madelaine, S., Maureille, B., McPherron, S.J.P., Mercier, N., Murray, A.S., Sandgathe, D., Steele, T.E., Thomsen, K.J., Turq, A. (2015). A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. Journal of Archaeological Science 58, 147166.Google Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C.B., Brock, F., Basell, L., Camps, M., Arrizabalaga, A., Baena, J., Barroso-Ruiz, C., Bergman, C., Boitard, C., Boscato, P., Caparros, M., Conard, N.J., Draily, C., Froment, A., Galvan, B., Gambassini, P., Garcia-Moreno, A., Grimaldi, S., Haesaerts, P., Holt, B., Iriarte-Chiapusso, M., Jelinek, A., Jorda Pardo, J.F., Maíllo-Fernández, J., Marom, A., Maroto, J., Menendez, M., Metz, L., Morin, E., Moroni, A., Negrino, F., Panagopoulou, E., Peresani, M., Pirson, S., de la Rasilla, M., Riel-Salvatore, J., Ronchitelli, A., Santamaria, D., Semal, P., Slimak, L., Soler, J., Soler, N., Villaluenga, A., Pinhasi, R., Jacobi, R. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306309.Google Scholar
Hoffmann, D.L., Pike, A.W.G., Wainer, K., Zilhão, J. (2013). New U-series results for the speleogenesis and the Palaeolithic archaeology of the Almonda karstic system (Torres Novas, Portugal). Quaternary International 294, 168182.Google Scholar
Hublin, J.-J., Barroso-Ruiz, C., Lara, P.M., Fontugne, M., Reyss, J. (1995). The Mousterian site of Zafarraya (Andalucia, Spain): dating and implications on the Palaeolithic peopling processes of Western Europe. Compte Rendus de l'Académie des Sciences, Paris, série IIa 321 931937.Google Scholar
Huntley, D.J., Baril, M.R. (1997). The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1 1113.Google Scholar
Huntley, D.J., Hancock, R.G.V. (2001). The Rb contents of K-feldspar grains being measured in optical dating. Ancient TL 19, 2 4346.Google Scholar
Huntley, D.J., Lamothe, M. (2001). Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.CrossRefGoogle Scholar
Jennings, R. (2006). Neanderthal and Modern Human Occupation Patterns in Southern Iberia during the Late Pleistocene Period.(PhD thesis)Hertford College, Oxford.Google Scholar
Jennings, R.P., Giles Pacheco, F., Barton, R.N.E., Collcutt, S.N., Gale, R., Gleed-Owen, C.P., Gutiérrez López, J.M., Higham, T.F.G., Parker, A., Price, C., Rhodes, E., Santiago Pérez, A., Schwenninger, J.L., Turner, E. (2009). New dates and palaeoenvironmental evidence for the Middle to Upper Palaeolithic occupation of Higueral de Valleja Cave, southern Spain. Quaternary Science Reviews 28, 830839.Google Scholar
Jöris, O., Álvarez Fernández, A., Weninger, B. ("ris et al., 2003). Radiocarbon evidence of the Middle to Upper Palaeolithic transition in Southwestern Europe. Trabajos de Prehistoria 60, 2 1538.Google Scholar
Karkanas, P., Goldberg, P. (2013). 6.23 Micromorphology of Cave Sediments.Shroder, J.F. Treatise on Geomorphology Academic Press, San Diego.286297.CrossRefGoogle Scholar
Karkanas, P., Brown, K.S., Fisher, E.C., Jacobs, Z., Marean, C.W. (2015). Interpreting human behavior from depositional rates and combustion features through the study of sedimentary microfacies at site Pinnacle Point 5–6, South Africa. Journal of Human Evolution 85, 121.CrossRefGoogle Scholar
Kehl, M., Burow, C., Cantalejo, P., Durán, J.J., Henselowsky, F., Klasen, N., Medianero, F.J., Ramos, J.J., Reicherter, K., Schmidt, C., Weniger, G.-C. (2013a). The Palaeolithic site Sima de Las Palomas de Teba, Southerrn Spain — site formation processes and chronostratigraphy. Proceedings of the VIII Reunión de Cuaternario Ibérico, La Rinconada, Sevilla 285289.Google Scholar
Kehl, M., Burow, C., Hilgers, A., Navazo, M., Pastoors, A., Weniger, G.-C., Wood, R., Jordá Pardo, J.F. (2013b). Late Neanderthals at Jarama VI (Central Iberia)?. Quaternary Research 80, 218234.Google Scholar
Lenoble, A., Bertran, P. (2004). Fabric of Palaeolithic levels: methods and implications for site formation processes. Journal of Archaeological Science 31, 457469.Google Scholar
Linstädter, J., Kehl, M. ("dter and Kehl, 2012). The Holocene archaeological sequence and site formation processes at Ifri Oudadane, NE Morocco. Journal of Archaeological Science 39, 33063323.Google Scholar
López-Sáez, J.A., López-García, P., Cortés Sánchez, M. ("pez-Sáez et al., 2007). Paleovegetación del Cuaternario reciente: Estudio arqueopalinológico.Cortés Sánchez, M. Cueva Bajondillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga. Centro de Ediciones de la Diputación de Málaga, Junta de Andalucía, Universidad de Málaga, Fundación Cueva de Nerja y Fundación Obra Social de Unicaja, Málaga.139156.Google Scholar
Mallol, C., Cabanes, D., Baena, J. (2010). Microstratigraphy and diagenesis at the upper Pleistocene site of Esquilleu Cave (Cantabria, Spain). Quaternary International 214, 7081.Google Scholar
Mallol, C., Hernández, C.M., Machado, J. (2012). The significance of stratigraphic discontinuities in Iberian Middle-to-Upper Palaeolithic transitional sites. Quaternary International 275, 413.Google Scholar
Maroto, J., Vaquero, M., Arrizabalaga, Á., Baena, J., Baquedano, E., Jordá, J., Julià, R., Montes, R., van der Plicht, J., Rasines, P., Wood, R. (2012). Current issues in late Middle Palaeolithic chronology: new assessments from Northern Iberia. Quaternary International 247, 1525.CrossRefGoogle Scholar
Marreiros, J., Bicho, N. (2013). Lithic technology variability and human ecodynamics during the Early Gravettian of Southern Iberian Peninsula. Quaternary International 318, 90101.Google Scholar
Medianero, F.J., Ramos, J., Palmqvist, P., Weniger, G., Riquelme, J.A., Espejo, M., Cantalejo, P., Aranda, A., Pérez-Claros, J.A., Figueirido, B., Espigares, P., Ros-Montoya, S., Torregrosa, V., Linstädter, J., Cabello, L., Becerra, S., Ledesma, P., Mevdev, I., Castro, A., Romero, M., Martínez-Navarro, B. (2011). The karst site of Las Palomas (Guadalteba County, Málaga, Spain): a preliminary study of its Middle–Late Pleistocene archaeopaleontological record. Quaternary International 243, 127136.CrossRefGoogle Scholar
Michel, V., Delanghe-Sabatier, D., Bard, E., Barroso Ruiz, C. (2013). U-series, ESR and 14C studies of the fossil remains from the Mousterian levels of Zafarraya Cave (Spain): a revised chronology of Neanderthal presence. Quaternary Geochronology 15, 2033.Google Scholar
Miller, C.E., Conard, N.J., Goldberg, P., Berna, F. (2009). Dumping, sweeping and trampling: experimental micromorphological analysis of anthropogenically modified combustion features. Palethnologie 2, 25.37 Google Scholar
Mücher, H., van Steijn, H., Kwaad, F. ("cher et al., 2010). Colluvial and Mass Wasting Deposits.Stoops, G., Marcelino, V., Mess, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, Amsterdam.3748.Google Scholar
Murray, A.S., Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G. (2003). The single aliquot regenerative-dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Murray, A.S., Thomsen, K.J., Masuda, N., Buylaert, J.P., Jain, M. (2012). Identifying well-bleached quartz using different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements 47, 688695.CrossRefGoogle Scholar
Ortiz, J.E., Moreno, L., Torres, T., Vegas, J., Ruiz-Zapata, B., García-Cortés, Á., Galán, L., Pérez-González, A. (2013). A 220 ka palaeoenvironmental reconstruction of the Fuentillejo maar lake record (Central Spain) using biomarker analysis. Organic Geochemistry 55, 8597.CrossRefGoogle Scholar
Pagliai, M., Stoops, G. (2010). Physical and Biological Surface Crusts and Seals.Stoops, G., Marcelino, V., Mess, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, Amsterdam.419440.Google Scholar
Peña, de la, P., Vega Toscano, G. ("a, de la and Vega Toscano, 2013). The Early Upper Palaeolithic puzzle in Mediterranean Iberia. Quartär 60, 85106.Google Scholar
Peresani, M. (2003). Discoid lithic technologyAdvances and Implications.. British Archaeological Reports, International Series, S1120 Google Scholar
Pettitt, P.B., Bailey, R.M. (2000). AMS radiocarbon and luminescence dating of Gorham's and Vanguard Caves, Gibraltar, and implications for the Middle to Upper Palaeolithic transition in Iberia.Stringer, C.B., Barton, R.N.E., Finlayson, J.C. Neanderthals on the Edge Oxbow Books, Oxford.155162.Google Scholar
Phillips, E. (2006). Micromorphology of a debris flow deposit: evidence of basal shearing, hydrofracturing, liquefaction and rotational deformation during emplacement. Quaternary Science Reviews 25, 720738.Google Scholar
Prescott, J.R., Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 2/3 497500.Google Scholar
Preusser, F. (2003). IRSL dating of K-rich feldspars using the SAR protocol: comparison with independent age control. Ancient TL 21, 1 1723.Google Scholar
Preusser, F., Andersen, B.G., Denton, G.H., Schlüchter, C. (2005). Luminescence chronology of Late Pleistocene glacial deposits in North Westland, New Zealand. Quaternary Science Reviews 24, 22072227.Google Scholar
Ramos, J. (2013). Relationship and contacts of the Pleistocene hunter-gatherer societies with Mode III Technology between Northern Africa and the south Iberian Peninsula.Pastoors, A., Auffermann, B. Pleistocene Foragers on the Iberian Peninsula: Their Culture and Environment. Wissenschaftliche Schriften des Neanderthal Museums 7, Mettmann 3553.Google Scholar
Ramos, J., Aguilera, R., Cortés, M., Bañares, M.M. (2005). El parque arqueológico de La Araña. Una vía para el estudio, la conservación y la puesta en valor de yacimientos paleolíticos.Santonja, M., Pérez-Gonzalez, A., Machado, M. Geoarqueoloía y patrimonio en la Península Ibérica y el entorno mediterráneo ADEMA, Almazán.625638.Google Scholar
Rethemeyer, J., Dewald, A., Fülöp, R., Hajdas, I., Höfle, S., Patt, U., Stapper, B., Wacker, L. (2013). Status report on sample preparation facilities for 14C analysis at the new Cologne AMS centre. Nuclear Instruments and Methods in Physics Research B 294, 168172.CrossRefGoogle Scholar
Révillion, S., Tuffreau, A. (1994). Les industries laminaires au Paléolithique moyen. Actes de la table ronde internationale organisée par l'ERA 37 du CRA-CNRS " Villeneuve-d'Ascq 13 et 14 novembre 1991. C.N.R.S., Paris.(Dossier de documentation archéologique, 18)Google Scholar
Richter, D., Tostevin, G., Škrdla, P., Davies, W. (2009). New radiometric ages for the Early Upper Palaeolithic type locality of Brno-Bohunice (Czech Republic): comparison of OSL, IRSL, TL and 14C dating results. Journal of Archaeological Science 36, 708720.Google Scholar
Richter, D., Angelucci, D.E., Dias, M.I., Prudêncio, M.I., Gouveia, M.A., Cardoso, G.J., Burbidge, C.I., Zilhão, J. (2014). Heated flint TL-dating for Gruta da Oliveira (Portugal): dosimetric challenges and comparison of chronometric data. Journal of Archaeological Science 41, 705715.CrossRefGoogle Scholar
Roberts, H.M. (2012). Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent age control. Radiation Measurements 47, 716724.CrossRefGoogle Scholar
Ruiz Zapata, M.B., Gil, M.J. (2014). Estudio polínico de la secuencia.Weniger, G.-C., Ramos, J. Sima de las Palomas de Teba (Málaga). Resultados de las investigaciones 2011–2014 Ediciones Pinsapar, Málaga.6777.Google Scholar
Schmidt, C. (2013). Luminescence Dating of Heated Silex — Potential to Improve Accuracy and Precision and Application to Paleolithic Sites.(PhD thesis)University of Cologne, (300 pp.)Google Scholar
Schmidt, C., Kreutzer, S. (2013). Optically stimulated luminescence of amorphous/microcrystalline SiO2 (silex): basic investigations and potential in archeological dosimetry. Quaternary Geochronology 15, 110.Google Scholar
Schmidt, I., Bradtmöller, M., Kehl, M., Pastoors, A., Tafelmaier, Y., Weninger, B., Weniger, G.-C. (2012). Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quaternary International 274, 179204.Google Scholar
Stoops, G. (2003). Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, WI.Google Scholar
Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M. (2011). Luminescence dating of the Stratzing loess profile (Austria) — testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 2331.Google Scholar
Vallespí, E. (1986). El Paleolítico inferior y medio en Andalucía. Homenaje a Luis Siret (1934–1984) Junta de Andalucía, Sevilla.5966.Google Scholar
Vega Toscano, L.G. (1988). El Paleolítico Medio del Sureste Español y Andalucía Oriental. Universidad Complutense, Madrid.Google Scholar
Vegas, J., Ruiz-Zapata, B., Ortiz, J.E., Galán, L., Torres, T., García-Cortés, Á., Gil-García, M.J., Pérez-González, A., Gallardo-Millán, J.L. (2010). Identification of arid phases during the last 50 cal ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava Volcanic Field, Spain). Journal of Quaternary Science 25, 10511062.Google Scholar
Wallinga, J., Murray, A.S., Wintle, A.G. (2000). The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiation Measurements 32, 529533.Google Scholar
Weniger, C.-H., and Ramos Muñoz, J. ( 2014). Sima de las Palomas de Teba (Málaga). Resultados de las investigaciones 2011–2014 Ediciones Pinsapar, Málaga.Google Scholar
Wood, R.E., Barroso, C., Caparros, M., Jorda, J.F., Galvan Santos, B., Higham, T.F.G. (2013). Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proceedings of the National Academy of Sciences 110, 27812786.Google Scholar
Zilhão, J. ("o, 2006). )Chronostratigraphy of the Middle to- Upper Paleolithic transition in the Iberian Peninsula. Pyrenae 37, 784.Google Scholar
Zilhão, J., Davis, S.J.M., Duarte, C., Soares, A.M.M., Steier, P., Wild, E. ("o et al., 2010). Pego do Diabo (Loures, Portugal): dating the emergence of anatomical modernity in Westernmost Eurasia. PloS One 5, 1 e8880 Google Scholar
Supplementary material: File

Kehl et al. supplementary material

Figure S1-S5

Download Kehl et al. supplementary material(File)
File 486.4 KB