Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:14:07.592Z Has data issue: false hasContentIssue false

Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2 ka

Published online by Cambridge University Press:  20 January 2017

Abstract

Expansion or shrinkage of closed lakes is a natural response to fluctuations in precipitation and evaporation, linked closely to changes in strength or position of atmospheric circulation. In Tibet, there are many such lakes with paleo-shorelines that can be used for reconstructions of climate history. Despite the fact that many paleo-shorelines are well preserved in Tibet, dating them has been seriously hindered by various difficulties. Here we present the first optical dating chronology for a series of paleo-shorelines in Zhari Namco, the third-largest inland lake in central Tibet. Our results indicate that the lake level has dropped 128 m over the past 8.2 ka. Younger shorelines are found at lower altitudes, indicating that the shorelines follow a geomorphic-chronological order and a broadly continuous trend of stepwise shrinkage. The surface area of Zhari Namco has shrunk in size from 4605 km2 at 8.2 ka ago to 996 km2 at present; 300 km2 of water has been lost from this lake. Such a loss in water implies a significant reduction in precipitation over the past 8.2 ka, a likely result of a weakening Asian monsoon. Following the decreasing precipitation since the early Holocene, this area has become increasingly arid.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Current address: Centre for Archaeological Science, School of Earth and Environmental Sciences, The University of Wollongong, NSW 2522, Australia.
2 Current address: School of Geosciences, The University of Sydney, NSW 2006, Australia.

References

Aitken, M.J., (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.CrossRefGoogle Scholar
An, Z.S., (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.Google Scholar
An, Z.S., Porter, S.C., Kutzbach, J.E., Wu, X.H., Wang, S.M., Liu, X.D., Li, X.Q., Zhou, W.J., (2000). Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, 743762.Google Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Chen, F.H., Yu, Z.C., Yang, M.L., Ito, E., Wang, S.M., Madsen, D.B., Huang, X.Z., Zhao, Y., Sato, T., Briks, H.J.B., Boomer, I., Chen, J.H., An, C.B., W"nneman, B., (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.Google Scholar
Chen, Y.W., Li, S.-H., Li, B., (2012). Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces. Quaternary Geochronology 10, 291299.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 17371739.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Li, B.Y., Li, Y.F., Liu, Q., Melieres, F., Van Campo, E., Wang, F.B., Zhang, Q.S., (1991). A 13,000-year climate record from western Tibet.. Nature 353, 742745.Google Scholar
Gasse, F., Fontes, J.Ch., Van Campo, E., Wei, K., (1996). Holocene environmental changes in Bangong Co basin (western Tibet). Part 4: discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.Google Scholar
Gu, Z.Y., Liu, J.Q., Yuan, B.Y., Liu, T.S., Liu, R.M., Liu, Y., Zhang, G., (1993). The changes in monsoon influence in the Qinghai-Tibetan Plateau during the past 12,000 years. Geochemical evidence from L. Selin sediments. Chinese Science Bulletin 38, 6164.Google Scholar
Gupta, A.K., Anderson, D.M., Overpeck, J.T., (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354357.Google Scholar
Hong, Y.T., Hong, B., Lin, Q.H., Zhu, Y.X., Shibata, Y., Hirota, M., Uchida, M., Leng, X.T., Jiang, H.B., Xu, H., Wang, H., Yi, L., (2003). Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters 211, 371380.CrossRefGoogle Scholar
Hudson, A.M., Quade, J., (2013). Long-term east-west asymmetry in monsoon rainfall on the Tibetan Plateau. Geology 41, 351354.CrossRefGoogle Scholar
Kong, P., Na, C.G., Brown, R., Fabel, D., Freeman, S., Xiao, W., Wang, Y.J., (2011). Cosmogenic 10 Be and 26 Al dating of paleolake shorelines in Tibet. Journal of Asian Earth Sciences 41, 263273.Google Scholar
Lai, Z.P., Kaiser, K., Brückner, H., (2009). Luminescence-dated aeolian deposits of late Quaternary age in the southern Tibetan Plateau and their implications for landscape history. Quaternary Research 72, 421430.CrossRefGoogle Scholar
Lee, J., Li, S.-H., Aitchison, J.C., (2009). OSL dating of paleoshorelines at Lagkor Tso, western Tibet. Quaternary Geochronology 4, 335343.CrossRefGoogle Scholar
Lehmkuhl, F., Haselein, F., (2000). Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and Western Mongolia). Quaternary International 65, 121145.Google Scholar
Lehmkuhl, F., Klinge, M., Lang, A., (2002). Late Quaternary glacier advances, lake level fluctuations and aeolian sedimentation in Southern Tibet. Zeitschrift für Geomorphologie Supplementband 126, 183218.Google Scholar
Li, B.Y., (2000). The last greatest lakes on the Tibetan Plateau. Acta Geographica Sinica 55, 174182.Google Scholar
Li, S.-H., Sun, J.M., Zhao, H., (2002). Optical dating of dune sands in the northeastern deserts of China. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 419429.Google Scholar
Li, D.W., Li, Y.K., Ma, B.Q., Dong, G.C., Wang, L.Q., Zhao, J.X., (2009). Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environmental Research Letters 4, 045204.Google Scholar
Lister, G.S., Kelts, K., Chen, K.Z., Yu, J.-Q., Niessen, F., (1991). Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 141162.Google Scholar
Liu, X.J., Lai, Z.P., Madsen, D., Yu, L.P., Liu, K., Zhang, J.R., (2011). Lake level variations of Qinghai Lake in northeastern Qinghai-Tibetan Plateau since 3.7 ka based on OSL dating. Quaternary International 236, 5764.Google Scholar
Liu, X.J., Lai, Z.P., Zeng, F.M., Madsen, D., E, C.Y., (2013). Holocene lake level variations on the Qinghai-Tibetan Plateau. International Journal of Earth Sciences (Geol Rundsch) 10.1007/s00531-013-0896-2.Google Scholar
Long, H., Lai, Z.P., Wang, N.A., Li, Y., (2010). Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quaternary Research 74, 4656.CrossRefGoogle Scholar
Long, H., Lai, Z.P., Frenzel, P., Fuchs, M., Haberzettl, T., (2012). Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau. Quaternary Geochronology 10, 136142.Google Scholar
M"gler, I., Gleixner, G., Gunther, F., Mausbacher, R., Daut, G., Schutt, B., Berking, J., Schwalb, A., Schwark, L., Xu, B., Yao, T., Zhu, L., Yi, C., (2010). A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. Journal of Paleolimnology 43, 625648.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contribution to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.Google Scholar
Shen, J., Liu, X.Q., Wang, S.M., Ryo, M., (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Shen, J., Jones, R.T., Yang, X.D., Dearing, J.A., Wang, S.M., (2006). The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. The Holocene 16, 265276.Google Scholar
Shi, Y.F., (2002). Discussion on temperature lowering values and equibrium line altitude in the Qinghai-Xizang Plateau during the Last Glacial Maximum and their simulated results. Quaternary Sciences 22, 312322.Google Scholar
Shi, Y.F., (2004). The emergence and abandonment of the ice sheet hypothesis over the Qinghai-Xizang Plateau during the ice age. Quaternary Sciences 24, 1018.Google Scholar
Thompson, L.G., Mosley- Thompson, E., Davis, M.E., Bolzan, J.F., Dai, J., Yao, T., Gundestrup, N., Wu, X., Klein, L., Xie, Z., (1989). Holocene"Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246, 474477.CrossRefGoogle ScholarPubMed
Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley- Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., (1997). Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276, 18211825.CrossRefGoogle Scholar
Van Campo, E., Gasse, F., (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (western Tibet) since 13,000 yr B.P.. Quaternary Research 39, 300313.Google Scholar
Wang, S.M., Dou, H.S., (1998). Chinese Lake Records. Science Press, Beijing.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A., (2001). A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wang, N.L., Yao, T.D., Thompson, L.G., Henderson, K.A., Davis, M.E., (2002a). Evidence for cold events in the early Holocene from the Guliya ice core, Tibetan Plateau, China. Chinese Science Bulletin 47, 14221427.Google Scholar
Wang, R.L., Scarpitta, S.C., Zhang, S.C., Zheng, M.P., (2002b). Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters 203, 461477.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Wang, Y.B., Liu, X.Q., Herzschuh, U., (2010a). Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal Central Asia. Earth-Science Reviews 103, 135153.Google Scholar
Wang, J.B., Peng, P., Ma, Q.F., Zhu, L.P., (2010b). Modern limnological features of Tangra Yumco and Zhari Namco, Tibetan Plateau. Journal of Lake Science 22, 629632.Google Scholar
Wei, K., Gasse, F., (1999). Oxygen isotopes in lacustrine carbonates of West China revisited: implications for post glacial changes in summer monsoon circulation. Quaternary Science Reviews 18, 13151334.CrossRefGoogle Scholar
Wintle, A.G., Murray, A.S., (2006). A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.Google Scholar
Wu, Y.H., L"cke, A., Jin, Z.D., Wang, S.M., Schleser, G.H., Battarbee, R.W., Xia, W.L., (2006). Holocene climate development on the central Tibetan Plateau: a sedimentary record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 328340.Google Scholar
Ye, D.-Z., Wu, G.-X., (1998). The role of the heat source of the Tibetan Plateau in the general circulation. Meteorology and Atmospheric Physics 67, 181198.CrossRefGoogle Scholar
Zhang, G.Q., Xie, H.J., Kang, S.C., Yi, D.H., Ackley, S.F., (2011). Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment 115, 17331742.Google Scholar
Zhao, Y., Yu, Z.C., (2012). Vegetation response to Holocene climate changes in East Asian monsoon-margin region. Earth-Science Reviews 113, 110.Google Scholar
Zhao, X.T., Zhu, D.G., Yan, F.H., Wu, Z.H., Ma, Z.B., Mai, X.S., (2003). Climate change and lake-level variation of Nam Co, Xizang since the last interglacial stage. Quaternary Sciences 23, 4152.Google Scholar
Zhao, Y., Yu, Z.C., Chen, F.H., Zhang, J.W., Yang, B., (2009). Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews 97, 242256.CrossRefGoogle Scholar
Zhao, C., Chang, Y.-P., Chen, M.-T., Liu, Z.H., (2013). Possible reverse trend in Asian summer monsoon strength during the late Holocene. Journal of Asian Earth Sciences 69, 102112.Google Scholar
Zheng, M.P., Yuan, H.R., Zhao, X.T., Liu, X.F., (2006). The Quaternary pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica 79, 821834.Google Scholar
Zhu, L.P., Wu, Y.H., Wang, J.B., Lin, X., Ju, J.T., Xie, M.P., Li, M.H., M"usbacher, R., Schwalb, A., Daut, G., (2008). Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, 831839.Google Scholar
Supplementary material: File

Chen et al. Supplementary Material

Supplementary Material

Download Chen et al. Supplementary Material(File)
File 2.1 MB