Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T22:50:23.111Z Has data issue: false hasContentIssue false

Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard

Published online by Cambridge University Press:  20 January 2017

Sylvi Haldorsen*
Affiliation:
Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.B. 5003, N-1432 Ås, Norway
Michael Heim
Affiliation:
Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.B. 5003, N-1432 Ås, Norway
Barrie Dale
Affiliation:
Department of Geoscience, University of Oslo, P.B. 1047 Blindern, N-0316 Oslo, Norway
Jon Y. Landvik
Affiliation:
Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, P.B. 5003, N-1432 Ås, Norway
Martine van der Ploeg
Affiliation:
Wageningen University, Dept. Environmental Sciences, Soil Physics, Ecohydrology and Ground Water Management Group, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
Anton Leijnse
Affiliation:
Wageningen University, Dept. Environmental Sciences, Soil Physics, Ecohydrology and Ground Water Management Group, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
Otto Salvigsen
Affiliation:
Department of Geoscience, University of Oslo, P.B. 1047 Blindern, N-0316 Oslo, Norway
Jon Ove Hagen
Affiliation:
Department of Geoscience, University of Oslo, P.B. 1047 Blindern, N-0316 Oslo, Norway
David Banks
Affiliation:
Holymoor Consultancy, 8 Heaton Street, Chesterfield, Derbyshire, S40 3AQ, UK
*
*Corresponding author.E-mail addresses:[email protected] (S. Haldorsen), [email protected] (M. Heim), [email protected] (B. Dale), [email protected] (J.Y. Landvik), [email protected] (M. van der Ploeg), [email protected] (A. Leijnse), [email protected] (O. Salvigsen), [email protected] (J.O. Hagen), [email protected] (D. Banks).

Abstract

Deep subpermafrost aquifers are highly climate-dependent, with the permafrost as an aquitard preventing groundwater recharge and discharge. A study from the high-arctic island of Spitsbergen, Svalbard, shows that during a glacial to interglacial phase, both the permafrost and the glacier regime will respond to climatic changes, and a glacier-fed groundwater flow system will vary accordingly. A full glaciation results in the melting of permafrost, and groundwater can flow through pores and fracture systems in the rocks and sediments below the temperate zones of glaciers. These groundwater flow systems will mainly be localized to fjords and valleys and form low-lying terrestrial springs when the relative sea level drops during deglaciation due to glacio-isostatic rise. During an interglaciation, permafrost develops and thickens and the groundwater recharge and discharge areas will thereby be gradually reduced to a minimum reached at the warmest part of an interglaciation. An already frozen spring system cannot reopen before the permafrost melts. Only groundwater springs related to permanently warm-based glacial ice will persist into the next glaciation. During a new glaciation, flow systems that terminated during the previous interglaciation may become revitalized if overridden by warm-based ice causing permafrost thawing.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundsen, H.E.F., Griffin, W.L., O'Reilly, S.Y., (1987). The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics 139, 169185.Google Scholar
Amundsen, H.E.F., Griffin, W.L., O'Reilly, S.Y., (1988). The nature of the lithosphere beneath northwestern Spitsbergen: xenolithic evidence. Kristoffersen, Y., Progress in Studies of the Lithosphere in Norway. Geological Survey of Norway, Special Publication 3. 5865.Google Scholar
Banks, D., Sletten, R.S., Haldorsen, S., Dale, B., Heim, M., Swensen, B., (1998). The thermal springs of Bockfjord, Svalbard: occurrence and major ion hydrochemistry. Geothermics Journal 27, 445467.Google Scholar
Banks, D., Siewers, U., Sletten, R.S., Haldorsen, S., Dale, B., Heim, M., Swensen, B., (1999). The thermal springs of Bockfjord, Svalbard: selected aspects of trace element hydrochemistry. Geothermics Journal 28, 713728.Google Scholar
Banks, D., Haldorsen, S., Sletten, R.J., Heim, M., Swensen, B., Dale, B., (2001). The world's northernmost thermal springs: Bockfjorden, Svalbard. Their geological setting and hydrogeochemistry.. Proceddings XXXIst IAH Annual Congress Munich 897901.Google Scholar
Booij, M., Haldorsen, S., Leijnse, T., Heim, M., Rueslåtten, H., (1998). Modelling of subpermafrost groundwater in Ny-Ålesund, Svalbard. Nordic Hydrology 29, 385396.Google Scholar
Brown, J., Ferrians Jr., O.J., Heginbottom, J.A., Melkinov, E.S., (2001). Circum-arctic map of permafrost and ground conditions. Boulder, C.O., United States Geological -Ice Survey Series, CP-45. Reston, VA, USA.Google Scholar
Cramer, B., Poelchau, H.S., Gerling, P., Lopatin, N.V., Littke, R., (1999). Methane released from groundwater: the source of natural gas accumulations in northern West Siberia. Marine and Petroleum Geology 16, 225244.Google Scholar
Deming, D., Sass, J.R., Lachenbruch, A.H., de Rito, R.F., (1992). Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska. Geological Society of America Bulletin 104, 528542.Google Scholar
DNMI Klimaavdelingen, , (2001). Middeltemperatur i Ny-Ålesund II. DNMI, Oslo. Google Scholar
Forman, S.L., Lubinski, D.J., Ingólfsson, Ó., Zeeberg, J.J., Snyder, J.A., Siegert, M.J., Matishov, G.G., (2004). A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23, 13911434.Google Scholar
Førland, E.J., Bauer-Hanssen, I., (2003). Past and future climate variations in the Norwegian Arctic: overview and novel analyses. Polar Research 22, 113124.CrossRefGoogle Scholar
Hagen, J.O., (1989). Isbreer og permafrost som klimaindikatorer. Orheim, O., Brekke, A., Hva skjer med klimaet i polarområdene. Norsk Polarinstitutt Report, 53. 7 pp.Google Scholar
Hagen, J.O., Liestøl, O., (1990). Long term glacier mass balance investigations in Svalbard 1950-1988. Annals of Glaciology 14, 102106.Google Scholar
Hagen, J.O., Liestøl, O., Roland, E., Jørgensen, T., (1993). Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt Meddelelser 129, 141pp.Google Scholar
Hagen, J.O., Korsen, O.M., Vatne, G., (1991). Drainage pattern in a subpolar glacier: Brøggerbreen, Svalbard. Gjessing, Y., Hagen, J.O., Hassel, K.A., Sand, K., Wold, B., Arctic hydrology. Present and future tasks. Hydrology of Svalbard—Hydrological problems in cold climate. Norwegian National Committee for Hydrology Report 23. 121131.Google Scholar
Hagen, J.O., Kohler, J., Melvold, K., Winter, J.G., (2003a). Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Research 22, 145159.Google Scholar
Hagen, J.O., Melvold, K., Pinglot, F, Dowdeswell, J.A., (2003b). On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Antarctic and Alpine Research 25, 264270.CrossRefGoogle Scholar
Haldorsen, S., Heim, M., (1999). An arctic groundwater system and its dependence upon climatic change. Permafrost and Periglacial Processes 10, 137149.Google Scholar
Haldorsen, S., and Lauritzen, S.-E., (1993). Subpermafrost groundwater in Spitsbergen. In: Banks, S., Banks, D., (Eds.), Hydrogeology of Hard Rocks . I.A.H. Memoires, v. XXIV, pp. 940-949.Google Scholar
Haldorsen, S., Heim, M., Lauritzen, S.-E., (1996). Subpermafrost groundwater, western Svalbard. Nordic hydrology 27, 5768.Google Scholar
Haldorsen, S., Heim, M., Dale, B., Banks, D., Sletten, R., Swensen, B., Salvigsen, O., (2000). Abstract XV INQUA Congress: arctic groundwater systems and their dependence upon climatic change: examples from Svalbard. Quaternary International 73, /74, 155.Google Scholar
Haldorsen, S., Heim, M., Lefauconnier, B., Petterson, L.E., Røros, M., Sandsbråten, K., (2002). The water balance of an Arctic lake and its dependence on climate change: Tvillingvatnet in Ny-Ålesund, Svalbard.. Norwegian Journal of Geography 56, 146151.Google Scholar
Hammer, Ø., Jamtveit, B., Benning, G., Dysthe, D.K., (2005a). Evolution of fluid chemistry during travertine formation in the Troll thermal springs, Svalbard, Norway. Geofluids 5, 140150.Google Scholar
Hammer, Ø., Jamtveit, B., Benning, L., Dysthe, D.K., (2005b). Arctic hot-springs and self-organized rimstone terraces at Spitsbergen. Abstracts and Proceedings of the Geological Society of Norway 1, 4344.Google Scholar
Hellman, F.J., Gee, D.G., Gjelsvik, T., Tebenkov, A.M., (1998). Provenance and tectonic implications of Palaeoproterozoic (c. 1740 Ma) quartz porphyry clasts in the basal Old Red Sandstone (Lilljeborgfjellet Conglomerate Formation) of northwestern Svalbard's Caledonides. Geological Magazine 135, 755768.CrossRefGoogle Scholar
Hjelle, A., (1993). Svalbards geologi. Norsk Polarinstitutt, Polarhåndbøker, Oslo., 162 pp.Google Scholar
Hoel, A., Holtedahl, O., (1911). Les nappes de lave, les volcans et les sources thermals dans les environs de la baie Wood au Spitsberg. Videnskapsselskapets skrifter (Christiania), Matematikk. Naturvidenskapelig klasse 8, 37 pp.Google Scholar
Humlum, O., Instanes, A., Sollid, J.L., (2003). Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Polar Research 22, 191215.Google Scholar
Humlum, O., Elberling, B., Hormes, A., Fjordheim, K., Hansen, O.H., Heinemeier, J., (2005). Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15, 396407.Google Scholar
Høgvard, K., Dallmann, W., Salvigsen, O., (1997). Tilstandsrapport for de varme kildene i Bockfjorden, NV Spitsbergen, Intern rapport fra geologisk seksjon til forvaltningsavdelingen. Norsk Polarinstitutt, Tromsø., 33 pp.Google Scholar
IPCC, , (2007). Climate Change 2007—The Physical Science Basis. Cambridge Univ. Press, Cambridge. Google Scholar
Jamtveit, B., Hammer, Ø., Buchanan, M., Devillier, S., Dysthe, D., Feder, J., (2005). Travertine formation and other pattern forming processes on sloping surfaces. Geochimica and Cosmochimica Acta 69, A482.Google Scholar
Jamtveit, G., Hammer, Ø., Andersson, C., Dysthe, D.K., Heldman, J., Fogel, M.L., (2006). Travertines from the Troll thermal springs, Svalbard. Norwegian Journal of Geology 86, 387395.Google Scholar
Kristiansen, K. J., and Sollid, J. L., (1986). Svalbard, Glasialgeologisk- og Geomofologisk kart, 1:1 000 000. Nasjonalatlas for Norge, Kartblad 2.3.5.Google Scholar
Landvik, J.Y., Mangerud, J., Salvigsen, O., (1988). Glacial history and permafrost development in the Svalbard area. Permafrost Fifth International Conference Proceedings Vol 1, Tapir Publishers, Trondheim., 194198.Google Scholar
Landvik, J.Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., Siegert, M.J., Svendsen, J.I., Vorren, T.O., (1998). The last glacial maximum of the Barents Sea and Svalbard area: ice sheet extent and configuration. Quaternary Science Reviews 17, 4375.Google Scholar
Landvik, J.Y., Brook, E.J., Gualtieri, L., Raisbeck, G., Salvigsen, O., Yiou, F., (2003). Northwest Svalbard during the last glaciation: ice free areas existed. Geology 31, 905908.Google Scholar
Landvik, J.Y., Ingólfsson, Ó., Mienert, J., Lehman, S.J., Elverhøi, A., Ottesen, D., (2005). Rethinking Later Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas 34, 724.Google Scholar
Langangen, A., (1979). Chara canenscens reported from Spitsbergen. Phycologia 18, 436437.Google Scholar
Langangen, A., (2000). Charophytes from the warm springs of Svalbard. Polar Research 19, 143153.Google Scholar
Lauritzen, S. - E., Bottrell, S., (1994). Microbiological activity in thermglacial Karst Springs, South Spitsbergen. Geomicrobiology Journal 12, 161173.Google Scholar
Lefauconnier, B., Hagen, J.O., (1990). Glaciers and climate in Svalbard, statistical analysis and reconstruction of the Brøgger glacier mass balance for the last 77 years. Annals of Glaciology 14, 148152.Google Scholar
Liestøl, O., (1976). Pingos, springs and permafrost in Spitsbergen. Norsk Polarinstitutt Årbok 1975, 729.Google Scholar
Liestøl, O., (1980). Permafrost conditions in Spitsbergen. Frost action in soils. Publication 21, Oslo., 2328.Google Scholar
Liestøl, O., (1996). Open pingos in Spitsbergen. Norsk Geografisk Tidsskrift 50, 8184.Google Scholar
Linell, K.A., (1973). Risk of uncontrolled flow from wells through permafrost. North American Contribution. Second International Conference on Permafrost. National Academy of Sciences, Washington, DC., 462468.Google Scholar
Lønne, I., Lyså, A., (2005). Deglaciation dynamics following the Little Ice Age on Svalbard: implications for shaping of landscapes at high latitudes. Geomorphology 72, 300319.Google Scholar
Mangerud, J., Landvik, J.Y., (2007). Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36, 278285.Google Scholar
Milner, A.M., Brittain, J.E., Castellas, E., Petts, G.E., (2001). Trends of macroinvertebrate community structure in glacial-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biology 46, 18331847.Google Scholar
MOSJ, , (2006). http://miljo.npolar.no/mosj/MOSJ/temaer/data.asp?mID=2&cID=2&fID=13&iID=20&pID=20&gID=20&dID=49.Google Scholar
Nunn, J.A., Hanor, J.S., Lee, Y., (2005). Migration pathways in the Central North Slope foreland basin, Alaska USA: solute and thermal constraints on fluid flow simulations. Basin Research 17, 403416.Google Scholar
Orvin, A., (1934). Geology of the Kings Bay region, Spitsbergen. Skrifter om Svalbard og Ishavet 57, 1336.Google Scholar
Orvin, A., (1944). Litt om kilder på Svalbard. Norsk Geografisk Tidsskrift 10, 1638.Google Scholar
Ottesen, D., Dowdeswell, J.A., (2009). An inter-ice-stream glaciated margin: submarine landforms and a geomorphic model based on marine–geophysical data from Svalbard. Geological Society of America Bulletin 121, 16471665.Google Scholar
Paterson, W.S.B., (1994). The physics of glaciers. 3rd ed Pergamon, Oxford. Google Scholar
Salvigsen, O., Österholm, H., (1982). Radiocarbon dated raised beaches and glacial history of the northern coast of Spitsbergen, Svalbard. Polar Research 1, 97115.CrossRefGoogle Scholar
Salvigsen, O., (2002). Radiocarbon-dated Mytilus edulis and Modiolus modiolus from northern Svalbard: climatic implications. Norwegian Journal of Geography 56, 5661.Google Scholar
Salvigsen, O., Høgvard, K., (1998). Gygrekjelda, a new warm spring in Bockfjorden, Svalbard. Polar Research 17, 107109.Google Scholar
Salvigsen, O., Høgvard, K., (2005). Glacial history, Holocene shoreline displacement and palaeoclimate based on radiocarbon ages in the area of Bockfjorden, north-western Spitsbergen, Svalbard. Polar Research 25, 1524.Google Scholar
Sauter, F.J., Leijnse, A., Beusen, A.H.W., (1993). Metropol, User's Guide. RIVM, Bilthoven, The Netherlands. Google Scholar
Skjelkvåle, B.L., Amundsen, H.E.F., O'Reilly, S.Y., Griffin, W.L., Gjelsvik, T., (1989). A primitive alkali basaltic stratovolcano and associated eruptive centers, Northwest Spitsbergen: volcanology and tectonic significance. Journal of Volcanology and Geothermal Research 37, 19.Google Scholar
Svendsen, J.I., Mangerud, J., (1991). Plaeoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Climatic Dynamics 6, 213220.Google Scholar
Svendsen, J.I., Mangerud, J., Elverhøi, A., Solheim, A., Schüttenhelm, R.T.E., (1992). The Late Weichselian glacial maximum on western Spitsbergen inferred from offshore sediment cores. Marine Geology 104, 117.CrossRefGoogle Scholar
Svendsen, J.I., Elverhøi, A., Mangerud, J., (1996). The retreat of the Barents Ice Sheet on the western Svalbard margin. Boreas 25, 244256.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingolfsson, O., Jakobsson, M., Kjaer, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Møller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siegert, M.J., Spielhagen, R.F., Stein, R., (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 1113.Google Scholar
Van der Ploeg, M., (2002). Simulation of coupled groundwater flow and transport of heat in the groundwater system under Vestre Lovénbreen, with the model METROHEAT. A surveying study. M.Sc. thesis Wageningen University, Environmental Sciences, Wageningen., 60 pp.Google Scholar
Van Everdingen, R.O., (1990). Ground water hydrology. Prowse, T.D., Ommanney, C.S.L., Canadian Perspectives. NHRI Science Report, 77101.Google Scholar
Vågnes, E., Amundsen, H.E.F., (1993). Late Cenozoic uplift and volcanism on Spitsbergen; caused by mantle convection?. Geology 21, 251254.Google Scholar
Wang, B., (1990). Permafrost and groundwater conditions, Huola Basin, northeast China. Permafrost and Periglacial Processes 1, 4552.Google Scholar
Werner, A., (1993). Holocene moraine chronology, Spitsbergen, Svalbard: lichenometric evidence for multiple Neoglacial advances in the Arctic. The Holocene 3, 128137.Google Scholar
Younger, P.L., (1989). Devensian Periglacial influences on the development of spatially variable permeability in the chalk of South East England. Quaterly Journal of Engineering Geology 22, 343354.Google Scholar