Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T05:26:08.295Z Has data issue: false hasContentIssue false

The sensitivity of Neotoma to climate change and biodiversity loss over the late Quaternary

Published online by Cambridge University Press:  18 June 2021

Catalina P. Tomé*
Affiliation:
School of Biological Sciences, University of Nebraska-Lincoln, NE68588USA Department of Biology, University of New Mexico, Albuquerque, NM87131USA
S. Kathleen Lyons
Affiliation:
School of Biological Sciences, University of Nebraska-Lincoln, NE68588USA
Seth D. Newsome
Affiliation:
Department of Biology, University of New Mexico, Albuquerque, NM87131USA
Felisa A. Smith
Affiliation:
Department of Biology, University of New Mexico, Albuquerque, NM87131USA
*
*Corresponding author e-mail address: <[email protected]>

Abstract

The late Quaternary in North America was marked by highly variable climate and considerable biodiversity loss including a megafaunal extinction event at the terminal Pleistocene. Here, we focus on changes in body size and diet in Neotoma (woodrats) in response to these ecological perturbations using the fossil record from the Edwards Plateau (Texas) across the past 20,000 years. Body mass was estimated using measurements of fossil teeth and diet was quantified using stable isotope analysis of carbon and nitrogen from fossil bone collagen. Prior to ca. 7000 cal yr BP, maximum mass was positively correlated to precipitation and negatively correlated to temperature. Independently, mass was negatively correlated to community composition, becoming more similar to modern over time. Neotoma diet in the Pleistocene was primarily sourced from C3 plants, but became progressively more reliant on C4 (and potentially CAM) plants through the Holocene. Decreasing population mass and higher C4/CAM consumption was associated with a transition from a mesic to xeric landscape. Our results suggest that Neotoma responded to climatic variability during the terminal Pleistocene through changes in body size, while changes in resource availability during the Holocene likely led to shifts in the relative abundance of different Neotoma species in the community.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alley, R.B., 2000. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, 213226.CrossRefGoogle Scholar
Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.CrossRefGoogle Scholar
Ambrose, S.H., 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18, 293317.CrossRefGoogle Scholar
Amundson, R., Austin, A.T., Schuur, E.A., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., Baisden, W.T., 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17, 1031. https://doi.org/10.1029/2002GB001903.CrossRefGoogle Scholar
Andrewartha, H.G., Birch, L.C., 1986. The Ecological Web: More on the Distribution and Abundance of Animals. University of Chicago Press, Chicago.Google Scholar
Ashton, K.G., Tracy, M.C., Queiroz, A.D., 2000. Is Bergmann's rule valid for mammals? American Naturalist 156, 390415.CrossRefGoogle ScholarPubMed
Auffray, J.C., Renaud, S., Claude, J., 2009. Rodent biodiversity in changing environments. Kasetsart Journal, Natural Science 43, 8393.Google Scholar
Austin, A.T., Vitousek, P.M., 1998. Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113, 519529.CrossRefGoogle ScholarPubMed
Bakker, E.S., Gill, J.L., Johnson, C.N., Vera, F.W., Sandom, C.J., Asner, G.P., Svenning, J.C., 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences 113, 847855.CrossRefGoogle ScholarPubMed
Barnosky, A.D., Lindsey, E.L., Villavicencio, N.A., Bostelmann, E., Hadly, E.A., Wanket, J., Marshall, C.R., 2016. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences 113, 856861.CrossRefGoogle ScholarPubMed
Bergmann, C., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Göttinger Studien 3, 595708.Google Scholar
Blois, J.L., McGuire, J.L., Hadly, E.A., 2010. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771774.CrossRefGoogle ScholarPubMed
Bourne, M.D., Feinberg, J.M., Stafford, T.W. Jr, Waters, M.R., Lundelius, E. Jr, Forman, S.L., 2016. High-intensity geomagnetic field ‘spike'observed at ca. 3000 cal BP in Texas, USA. Earth and Planetary Science Letters 442, 80-92.Google Scholar
Boutton, T.W., Archer, S.R., Midwood, A.J., Zitzer, S.F., Bol, R., 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82, 541.CrossRefGoogle Scholar
Boutton, T.W., Nordt, L.C., Archer, S.R., Midwood, A.J., Casar, I., 1993. Stable carbon isotope ratios of soil organic matter and their potential use as indicators of palaeoclimate. In: Proceedings of the International Symposium on Applications of Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. International Atomic Energy Agency, no. 329, pp. 445459.Google Scholar
Bowers, M.A., Brown, J.H., 1982. Body size and coexistence in desert rodents: chance or community structure? Ecology 63, 391400.CrossRefGoogle Scholar
Braun, J.K., Mares, M.A., 1989. Neotoma micropus. Mammalian Species 330, 19.CrossRefGoogle Scholar
Brown, J.H., 1968. Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N. albigula. Miscellaneous Publications, Museum of Zoology, University of Michigan 135, 148.Google Scholar
Brown, J.H., 1973. Species diversity of seed-eating desert rodents in sand dune habitats. Ecology 54, 775787.CrossRefGoogle Scholar
Brown, J.H., Heske, E.J., 1990. Temporal changes in a Chihuahuan Desert rodent community. Oikos 59, 290302.CrossRefGoogle Scholar
Brown, J.H., Lee, A.K., 1969. Bergmann's rule and climatic adaptation in woodrats (Neotoma). Evolution 23, 329338.Google Scholar
Brown, J.H., Lieberman, G.A., Dengler, W.F., 1972. Woodrats and cholla: dependence of a small mammal population on the density of cacti. Ecology 53, 310313.CrossRefGoogle Scholar
Brown, J.H., Nicoletto, P.F., 1991. Spatial scaling of species composition: body masses of North American land mammals. The American Naturalist 138, 14781512.CrossRefGoogle Scholar
Bryant, V.M. Jr., Holloway, R.G., 1985. A late-Quaternary paleoenvironmental record of Texas: an overview of the pollen evidence. In: Bryant, V.M. Jr., Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Association of Stratigraphic Palynologists Foundation, Dallas, TX, pp. 3970.Google Scholar
Cameron, G.N., 1971. Niche overlap and competition in woodrats. Journal of Mammalogy 52, 288296.CrossRefGoogle ScholarPubMed
Cameron, G.N., Spencer, S.R., 1981. Sigmodon hispidus. Mammalian Species 158, 19.CrossRefGoogle Scholar
Carraway, L.N., Verts, B.J., 1991. Neotoma fuscipes. Mammalian Species 386, 110.Google Scholar
Cerling, T. E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153158.CrossRefGoogle Scholar
Chamberlain, C.P., Waldbauer, J.R., Fox-Dobbs, K., Newsome, S.D., Koch, P.L., Smith, D.R., Church, M.E., et al. , 2005. Pleistocene to recent dietary shifts in California condors. Proceedings of the National Academy of Sciences 102, 1670716711.CrossRefGoogle ScholarPubMed
Cole, K.L., Arundel, S.T., 2005. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona. Geology 33, 713716.CrossRefGoogle Scholar
Cooke, M.J., Stern, L.A., Banner, J.L., Mack, L.E., Stafford, T.W. Jr, Toomey III, R.S., 2003. Precise timing and rate of massive late Quaternary soil denudation. Geology 31, 853856.CrossRefGoogle Scholar
Cordova, C.E., Johnson, W.C. 2019. An 18 ka to present pollen- and phytolith-based vegetation reconstruction from Hall's Cave, south-central Texas, USA. Quaternary Research 92, 497518.CrossRefGoogle Scholar
Cotton, J.M., Cerling, T.E., Hoppe, K.A., Mosier, T.M., Still, C.J., 2016. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum. Science Advances 2, e1501346. https://doi.org/10.1126/sciadv.1501346.CrossRefGoogle ScholarPubMed
Damuth, J., 1981. Population density and body size in mammals. Nature 290, 699700.CrossRefGoogle Scholar
Dansgaard, W., White, J.W.C., Johnsen, S.J., 1989. The abrupt termination of the Younger Dryas climate event. Nature 339, 532534.CrossRefGoogle Scholar
Dearing, M.D., McLister, J.D., Sorensen, J.S., 2005. Woodrat (Neotoma) herbivores maintain nitrogen balance on a low-nitrogen, high-phenolic forage, Juniperus monosperma. Journal of Comparative Physiology B 175, 349355.CrossRefGoogle ScholarPubMed
DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495506.CrossRefGoogle Scholar
DeNiro, M.J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341351.CrossRefGoogle Scholar
Derner, J.D., Boutton, T.W., Briske, D.D., 2006. Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil 280, 7790.CrossRefGoogle Scholar
Dial, K.P., 1988. Three sympatric species of Neotoma: dietary specialization and coexistence. Oecologia 76, 531537.CrossRefGoogle ScholarPubMed
Doughty, C.E., Wolf, A., Malhi, Y., 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience 6, 761764.CrossRefGoogle Scholar
Dublin, H.T., Sinclair, A.R., McGlade, J., 1990. Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. The Journal of Animal Ecology 59, 11471164.CrossRefGoogle Scholar
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40, 503537.CrossRefGoogle Scholar
Finley, R.B., 1958. The wood rats of Colorado, distribution and ecology. University of Kansas Publications of the Museum of Natural History 10, 213552.Google Scholar
Ford, W.M., Castleberry, S.B., Mengak, M.T., Rodrigue, J.L., Feller, D.J., Russell, K.R., 2006. Persistence of Allegheny woodrats Neotoma magister across the mid-Atlantic Appalachian Highlands landscape, USA. Ecography 29, 745754.CrossRefGoogle Scholar
Freckleton, R.P., Harvey, P.H., Pagel, M., 2003. Bergmann's rule and body size in mammals. The American Naturalist 16, 821825.CrossRefGoogle Scholar
Fry, B., 2006. Stable Isotope Ecology. Springer, New York.CrossRefGoogle Scholar
Galetti, M., Guevara, R., Neves, C.L., Rodarte, R.R., Bovendorp, R.S., Moreira, M., Hopkins, J.B. III, Yeakel, J.D., 2015. Defaunation affect population and diet of rodents in Neotropical rainforests. Biological Conservation 190, 27.CrossRefGoogle Scholar
Goheen, J.R., Augustine, D.J., Veblen, K.E., Kimuyu, D.M., Palmer, T.M., Porensky, L.M., Pringle, R.M., et al. , 2018. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Annals of the New York Academy of Sciences 1429, 3149.CrossRefGoogle ScholarPubMed
Goheen, J.R., Keesing, F., Allan, B.F., Ogada, D., Ostfeld, R.S., 2004. Net effects of large mammals on Acacia seedling survival in an African savanna. Ecology 85, 15551561.CrossRefGoogle Scholar
Goheen, J.R., Palmer, T.M., Keesing, F., Riginos, C., Young, T.P., 2010. Large herbivores facilitate savanna tree establishment via diverse and indirect pathways. Journal of Animal Ecology 79, 372382.CrossRefGoogle ScholarPubMed
Graham, R.W., 1987. Late Quaternary mammalian faunas and paleoenvironments of the southwestern Plains of the United States. In: Graham, R.W., Semken, H.A. Jr., Graham, M.A. (Eds.), Late Quaternary mammalian biogeography and environments of the Great Plains and Prairies. Illinois State Museum Scientific Papers 22, pp. 2486.Google Scholar
Graham, R.W., Lundelius, E.L. Jr., Graham, M.A., Schroeder, E.K., Toomey, R.S. III, Anderson, E., Barnosky, A.D., et al. , 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science 5208, 16011606.CrossRefGoogle Scholar
Grayson, D.K., 2000. Mammalian responses to middle Holocene climatic change in the Great Basin of the western United States. Journal of Biogeography 27, 181192.CrossRefGoogle Scholar
Healy, K., Guillerme, T., Kelly, S.B., Inger, R., Bearhop, S., Jackson, A.L., 2017. Data from: SIDER: an R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.c6035.Google Scholar
Healy, K., Guillerme, T., Kelly, S.B., Inger, R., Bearhop, S., Jackson, A.L., 2018. SIDER: an R package for predicting trophic discrimination factors of consumers based on their ecology and phylogenetic relatedness. Ecography 41, 13931400.CrossRefGoogle Scholar
IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, Pachauri, R.K., Meyer, L.A. [Eds.]). Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 151 pp.Google Scholar
Janzen, D H., Martin, P.S., 1982. Neotropical anachronims: the fruits the Gomphotheres ate. Science 215, 1927.CrossRefGoogle ScholarPubMed
Johnson, C.N., 2009. Ecological consequences of Late Quaternary extinctions of megafauna. Proceedings of the Royal Society B: Biological Sciences 276, 25092519.CrossRefGoogle ScholarPubMed
Joines, J.P., 2011. 17,000 Years of Climate Change: the Phytolith Record from Hall's Cave, Texas. MS thesis, Oklahoma State University, Stillwater, Oklahoma, USA, 35 pp.Google Scholar
Justice, K.E., Smith, F.A., 1992. A model of dietary fiber utilization by small mammalian herbivores with empirical results for Neotoma. The American Naturalist 139, 398416.CrossRefGoogle Scholar
Keesing, F., 1998. Impacts of ungulates on the demography and diversity of small mammals in central Kenya. Oecologia 116, 381389.CrossRefGoogle ScholarPubMed
Keesing, F., Young, T.P., 2014. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487495.CrossRefGoogle Scholar
Kincaid, W.B., Cameron, G.N., 1985. Interactions of cotton rats with a patchy environment: dietary responses and habitat selection. Ecology 66, 17691783.CrossRefGoogle Scholar
Koch, P.L., 2007. Isotopic study of the biology of modern and fossil vertebrates. In: Michener, R., Lajtha, K. (Eds.), Stable Isotopes in Ecology and Environmental Science 2nd Ed. Blackwell Publishing, Malden, MA, pp. 99154.CrossRefGoogle Scholar
Koch, P.L., Diffenbaugh, N.S., Hoppe, K.A., 2004. The effects of late Quaternary climate and pCO2 change on C4 plant abundance in the south-central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 207, 331357.CrossRefGoogle Scholar
Koch, P.L., Fox-Dobbs, K.E.N.A., Newsome, S.D., 2009. The isotopic ecology of fossil vertebrates and conservation paleobiology. In: Dietl, G.P., Flessa, K.W., Conservation Paleobiology: Using the Past to Manage for the Future. The Paleontological Society Papers 15, 96112.Google Scholar
Koerner, S.E., Burkepile, D.E., Flynn, R.W.S., Burns, C.E., Eby, S., Govender, N., Hagenah, N., et al. , 2014. Plant community response to loss of large herbivores differs between North American and South African savanna grasslands. Ecology 95, 808816.CrossRefGoogle ScholarPubMed
Leonard, J.A., Vilà, C., Fox-Dobbs, K., Koch, P.L., Wayne, R.K., Van Valkenburgh, B., 2007. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Current Biology 17, 11461150.CrossRefGoogle ScholarPubMed
Lohse, J.C., Madsen, D.B., Culleton, B.J., Kennett, D.J., 2014. Isotope paleoecology of episodic mid-to-late Holocene bison population expansions in the Southern Plains, U.S.A. Quaternary Science Reviews 102, 1426.CrossRefGoogle Scholar
Lorenz, D.J., Nieto-Lugilde, D., Blois, J.L., Fitzpatrick, M.C., Williams, J.W., 2016a. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100 AD. Scientific Data 3, 160048. https://doi.org/10.1038/sdata.2016.48.CrossRefGoogle Scholar
Lorenz, D.J., Nieto-Lugilde, D., Blois, J.L., Fitzpatrick, M.C., Williams, J.W., 2016b. Data from: downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.1597g.CrossRefGoogle Scholar
Lundelius, E.L. Jr., 1967. Late Pleistocene and Holocene faunal history of central Texas. In: Martin, P.S., Wright, H.E. Jr., (Eds.), Pleistocene Extinctions, the Search for a Cause. Yale University Press, New Haven, pp. 287319.Google Scholar
Lyons, S.K., 2003. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84, 385402.2.0.CO;2>CrossRefGoogle Scholar
Lyons, S.K., 2005. A quantitative model for assessing community dynamics of Pleistocene mammals. The American Naturalist 165, E168E185.CrossRefGoogle ScholarPubMed
Lyons, S. K., Smith, F.A., Brown, J.H., 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research 6, 339358.Google Scholar
Macêdo, R.H., Mares, M.A., 1988. Neotoma albigula. Mammalian Species 31, 17.CrossRefGoogle Scholar
Malhi, Y., Doughty, C.E., Galetti, M., Smith, F.A., Svenning, J.C., Terborgh, J.W., 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences 113, 838846.CrossRefGoogle ScholarPubMed
Martin, P.S., 1967. Prehistoric overkill. In: Martin, P.S., Wright, H.E. Jr. (Eds.), Pleistocene Extinctions, the Search for a Cause. Yale University Press, New Haven, pp. 75120.Google Scholar
Martin, P.S., Klein, R.G., 1989. Quaternary Extinctions: A Prehistoric Revolution. University of Arizona Press, Tucson, AZ.Google Scholar
Martin, P.S., Steadman, D.W., 1999. Prehistoric extinctions on islands and continents. In: MacPhee, R.D.S. (Ed.), Extinctions in Near Time. Springer, Boston, MA, pp. 1755.CrossRefGoogle Scholar
Martin, R.A., 1990. Estimating body mass and correlated variables in extinct mammals: travels in the fourth dimension. In: Damuth, J., MacFadden, B.J. (Eds.), Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge, UK, pp. 4968.Google Scholar
Mayr, E., 1956. Geographical character gradients and climatic adaptation. Evolution 10, 105108.CrossRefGoogle Scholar
McLister, J.D., Sorensen, J.S., Dearing, M.D., 2004. Effects of consumption of juniper (Juniperus monosperma) on cost of thermoregulation in the woodrats Neotoma albigula and Neotoma stephensi at different acclimation temperatures. Physiological and Biochemical Zoology 77, 305312.CrossRefGoogle ScholarPubMed
M'Closkey, R.T., 1976. Community structure in sympatric rodents. Ecology 57, 728739.CrossRefGoogle Scholar
McNab, B.K., 1980. Food habits, energetics, and the population biology of mammals. The American Naturalist 116, 106124.CrossRefGoogle Scholar
Millien, V., Lyons, S.K., Olson, L., Smith, F.A., Wilson, A.B., Yom-Tov, Y., 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters 9, 853869.CrossRefGoogle ScholarPubMed
Mooney, H.A., Bullock, S.H., Ehleringer, J.R., 1989. Carbon isotope ratios of plants of a tropical dry forest in Mexico. Functional Ecology 3, 137142.CrossRefGoogle Scholar
Mooney, H., Troughton, J.H., Berry, J.A., 1974. Arid climates and photosynthetic systems. Annual Report, Department of Plant Biology, Carnegie Institution 73, 793805.Google Scholar
Murray, I.W., Smith, F.A., 2012. Estimating the influence of the thermal environment on activity patterns of the desert woodrat (Neotoma lepida) using temperature chronologies. Canadian Journal of Zoology 90, 1171180.CrossRefGoogle Scholar
Neotoma Paleoecology Database. 2015. http://www.neotomadb.org/.Google Scholar
Newsome, S.D., Martinez del Rio, C., Bearhop, S., Phillips, D.L., 2007. A niche for isotope ecology. Frontiers in Ecology and the Environment 5, 429436.CrossRefGoogle Scholar
Nordt, L.C., Boutton, T.W., Hallmark, C.T., Waters, M.R., 1994. Late Quaternary vegetation and climate changes in central Texas based on the isotopic composition of organic carbon. Quaternary Research 41, 109120.CrossRefGoogle Scholar
Olsen, R.W., 1976. Water: a limiting factor for a population of wood rats. The Southwestern Naturalist 21, 391398.CrossRefGoogle Scholar
Orr, T.J., Newsome, S.D., Wolf, B.O., 2015. Cacti supply limited nutrients to a desert rodent community. Oecologia 178, 10451062.CrossRefGoogle ScholarPubMed
Owen-Smith, R.N., 1992. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge, UK.Google Scholar
Parnell, A., Jackson, A., 2013. siar: stable isotope Analysis in R. R package version 4.2.2. https://CRAN.R-project.org/package=siar.Google Scholar
Parsons, E.W.R., Maron, J.L., Martin, T.E., 2013. Elk herbivory alters small mammal assemblages in high-elevation drainages. Journal of Animal Ecology 82, 459467.CrossRefGoogle ScholarPubMed
Peters, R.H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Prentice, I.C., Bartlein, P.J., Webb, T. III, 1991. Vegetation and climate change in eastern North America since the Last Glacial Maximum. Ecology 72, 20382056.CrossRefGoogle Scholar
Rainey, D.G., 1956. Eastern woodrat, Neotoma floridana: life history and ecology. University of Kansas Publications, Museum of Natural History 8, 536646.Google Scholar
Randolph, J.C., Cameron, G.N., Wrazen, J.A., 1991. Dietary choice of a generalist grassland herbivore, Sigmodon hispidus. Journal of Mammalogy 72: 300313.CrossRefGoogle Scholar
Raun, G.G., 1966. A population of woodrats (Neotoma micropus) in southern Texas. Texas Memorial Museum Bulletin 11, 162.Google Scholar
R Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M., Hayward, M.W., et al. , 2015. Collapse of the world's largest herbivores. Science Advances 1, e1400103. https//doi.org/10.1126/sciadv.1400103.CrossRefGoogle ScholarPubMed
RStudio Team, 2019. RStudio: Integrated Development for R. RStudio Inc. Boston, MA. http://www.rstudio.com/.Google Scholar
Rule, S., Brook, B.W., Haberle, S.G., Turney, C.S., Kershaw, A.P., Johnson, C.N., 2012. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 14831486.CrossRefGoogle ScholarPubMed
Sagebiel, J.C., 2010, Late Pleistocene Fauna from Zesch Cave, Mason County, Texas. Quaternary International 217, 159174.CrossRefGoogle Scholar
Schmidly, D.J., Bradley, R.D., 2016. The Mammals of Texas. University of Texas Press, Austin, Texas.CrossRefGoogle Scholar
Seersholm, F.V., Werndly, D.J., Grealy, A., Johnson, T., Keenan Early, E.M., Lundelius, E.L. Jr., Winsborough, B., et al. , 2020. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nature Communications 11, 2770. https://doi.org/10.1038/s41467-020-16502-3.CrossRefGoogle ScholarPubMed
Sharp, Z., 2017. Principles of Stable Isotope Geochemistry, 2nd Edition. University of New Mexico, Digital Repository. https://doi.org/10.5072/FK2GB24S9F.Google Scholar
Smiley, T.M., Cotton, J.M., Badgley, C., Cerling, T.E., 2016. Small-mammal isotope ecology tracks climate and vegetation gradients across western North America. Oikos 125, 11001109.CrossRefGoogle Scholar
Smith, F.A., 1995a. Scaling of digestive efficiency with body mass in Neotoma. Functional Ecology 9, 299305.CrossRefGoogle Scholar
Smith, F.A., 1995b. Den characteristics and survivorship of woodrats (Neotoma lepida) in the eastern Mojave Desert. Southwestern Naturalist 41, 366372.Google Scholar
Smith, F.A., 2008. Body size, energetics, and evolution. In: Jorgensen, S.E., Fath, B.D. (Eds.), Encyclopedia of Ecology. Elsevier, Amsterdam, pp. 477482.CrossRefGoogle Scholar
Smith, F.A., Betancourt, J.L., 1998. Response of bushy-tailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quaternary Research 50, 111.CrossRefGoogle Scholar
Smith, F.A., Betancourt, J.L., 2003. The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quaternary Research 59, 160171.CrossRefGoogle Scholar
Smith, F.A., Betancourt, J.L., Brown, J.H., 1995. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 20122014.CrossRefGoogle Scholar
Smith, F.A., Browning, H., Shepherd, U.L., 1998. The influence of climate change on the body mass of woodrats Neotoma in an arid region of New Mexico, USA. Ecography 21, 140148.CrossRefGoogle Scholar
Smith, F.A., Doughty, C.E., Malhi, Y., Svenning, J.C., Terborgh, J., 2016a. Megafauna in the Earth system. Ecography 39, 99108.CrossRefGoogle Scholar
Smith, F.A., Elliott Smith, R.E., Lyons, S.K., Payne, J.L., 2018. Body size downgrading of mammals over the late Quaternary. Science 360, 310313.CrossRefGoogle ScholarPubMed
Smith, F.A., Tomé, C.P., Elliott Smith, E.A., Lyons, S.K., Newsome, S.D., Stafford, T.W., 2016b. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223239.CrossRefGoogle Scholar
Spencer, D.A., Spencer, A.L., 1941. Food habits of the white-throated wood rat in Arizona. Journal of Mammalogy 22, 280284.CrossRefGoogle Scholar
Stanley, S.M., 1973. An explanation for Cope's rule. Evolution 27, 126.CrossRefGoogle ScholarPubMed
Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S., Lima, M., 2002. Ecological effects of climate fluctuations. Science 297, 12921296.CrossRefGoogle ScholarPubMed
Stock, B.C., Semmens, B.X., 2016. MixSIAR GUI user Manual. Version 3.1. https://github.com/brianstock/MixSIAR.Google Scholar
Sutton, B.G., Ting, I.P., Troughton, J.H., 1976. Seasonal effects on carbon isotope composition of cactus in a desert environment. Nature 26, 4243.CrossRefGoogle Scholar
Terry, R.C., 2018. Isotopic niche variation from the Holocene to today reveals minimal partitioning and individualistic dynamics among four sympatric desert mice. Journal of Animal Ecology 87, 173186.CrossRefGoogle ScholarPubMed
Terry, R.C., Guerre, M.E., Taylor, D.S., 2017. How specialized is a diet specialist? Niche flexibility and local persistence through time of the chisel-toothed kangaroo rat. Functional Ecology 31, 19211932.CrossRefGoogle Scholar
Thies, M., Caire, W., 1990. Association of Neotoma micropus nests with various plant species in southwestern Oklahoma. The Southwestern Naturalist 35, 8082.CrossRefGoogle Scholar
Tomé, C.P., Elliott Smith, E.A., Lyons, S.K., Newsome, S.D., Smith, F.A., 2020a. Changes in the diet and body size of a small herbivorous mammal (hispid cotton rat, Sigmodon hispidus) following the late Pleistocene megafauna extinction. Ecography 43, 604619.CrossRefGoogle Scholar
Tomé, C.P., Whiteman-Jennings, W., Smith, F.A. 2020b. The relationship between molar morphology and ecology within Neotoma. Journal of Mammalogy 101, 17111726.CrossRefGoogle Scholar
Toomey, R.S. III., 1993. Late Pleistocene and Holocene faunal and environmental changes at Hall's Cave, Kerr County, Texas. PhD dissertation, University of Texas, Austin, Texas, USA, 560 pp.Google Scholar
Toomey, R.S. III., Blum, M.D., Valastro, S. Jr, 1993. Late Quaternary climates and environments of the Edwards Plateau, Texas. Global Planetary Change 7, 299320.CrossRefGoogle Scholar
Tóth, A.B., Lyons, S.K., Barr, W.A., Behrensmeyer, A.K., Blois, J.L., Bobe, R., Matt Davis, M., et al. , 2019. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 13051308.CrossRefGoogle ScholarPubMed
Verts, B.J., Carraway, L.N., 2002. Neotoma lepida. Mammalian Species 699, 112.2.0.CO;2>CrossRefGoogle Scholar
Vorhies, C.T., Taylor, W.P., 1940. Life history and ecology of the white-throated wood rat, Neotoma albigula Hartley, in relation to grazing in Arizona. College of Agriculture, University of Arizona, Tucson, AZ, Technical Bulletin 86, 455528.Google Scholar
Walsh, R.E., Aprigio Assis, A.P., Patton, J.L., Marroig, G., Dawson, T.E., Lacey, E.A., 2016. Morphological and dietary responses of chipmunks to a century of climate change. Global Change Biology 22, 32333252.CrossRefGoogle ScholarPubMed
West, J.B., Bowen, G.J., Cerling, T.E., Ehleringer, J.R., 2006. Stable isotopes as one of nature's ecological recorders. Trends in Ecology & Evolution 21, 408414.CrossRefGoogle ScholarPubMed
Wiley, R.W., 1980. Neotoma floridana. Mammalian Species 139, 17.CrossRefGoogle Scholar
Supplementary material: File

Tomé et al. supplementary material

Tomé et al. supplementary material

Download Tomé et al. supplementary material(File)
File 473.4 KB