Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T21:28:05.216Z Has data issue: false hasContentIssue false

Sedimentology, faunal content and pollen record of Middle Pleistocene palustrine and lagoonal sediments from the Peri-Adriatic basin, Abruzzi, eastern central Italy

Published online by Cambridge University Press:  20 January 2017

Pierluigi Pieruccini
Affiliation:
Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
Claudio Di Celma*
Affiliation:
School of Science and Technology, University of Camerino, Camerino, Italy
Federico Di Rita
Affiliation:
Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
Donatella Magri
Affiliation:
Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
Giorgio Carnevale
Affiliation:
Department of Earth Sciences, University of Turin, Turin, Italy
Piero Farabollini
Affiliation:
School of Science and Technology, University of Camerino, Camerino, Italy
Luca Ragaini
Affiliation:
Department of Earth Sciences, University of Pisa, Pisa, Italy
Mauro Caffau
Affiliation:
OGS (National Institute of Oceanography and Experimental Geophysics), Sgonico, TS, Italy
*
*Corresponding author. E-mail address:[email protected](C. Di Celma)

Abstract

A 25 m-thick outcrop section exposed at Torre Mucchia, on the sea-cliff north of Ortona, eastern central Italy, comprises a rare Middle Pleistocene succession of shallow-water and paralic sediments along the western Adriatic Sea. An integrated study of the section, including facies and microfacies analyses, and characterization of paleobiological associations (mollusks, fishes, ostracods, foraminifers and pollen), enable a detailed reconstruction of the paleoenvironmental and paleoclimatic conditions during deposition. The shallow-water deposits include a transgressive, deepening- and fining-upward shoreface to offshore-transition facies succession overlain by a regressive shoreface-foreshore sandstone body with an erosive base and a rooted and pedogenically altered horizon at the top that imply deposition during sea-level fall. This forced regressive unit is overlain by paralic strata forming a transgressive succession comprising palustrine carbonates and back-barrier lagoonal mudstones. The palustrine carbonates exhibit some of the typical features encountered in palustrine limestones deposited within seasonal freshwater wetlands (marl prairies). Following the sea-level rising trend, the freshwater marshes were abruptly replaced by a barrier-lagoon system that allowed deposition of the overlying mud-rich unit. Within these deposits, the faunal assemblages are consistent with a low-energy brackish environment characterized by a relatively high degree of confinement. The pollen record documents the development of open forest vegetation dominated by Pinus and accompanied by a number of mesophilous and thermophilous tree taxa, whose composition supports a tentative correlation with Marine Oxygen Isotope Stage 17. The new pollen record from Torre Mucchia improves our understanding of the vegetation development in the Italian Peninsula during the Middle Pleistocene and sheds new light on the role played by the most marked glacial periods in determining the history of tree taxa.

Type
Research Article
Copyright
Copyright © University of Washington 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, S., Bertini, A., Caramiello, S., De Flavis, A.G., Mazza, P., Rossi, M.A., Satolli, S., 2007. A new mammalian bone bed from the lower Middle Pleistocene of Ortona (Chieti, Abruzzo, central Italy). In: Coccioni, R., Marsili, A. (Eds.), Proceedings of the Giornate di Paleontologia 2005, vol. 12. Grzybowski Foundation, pp. 15.Google Scholar
Aguirre, J., De Gibert, J.M., Puga-Bernabéu, A., 2010. Proximaledistal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain. Palaeogeography Palaeoclimatology Palaeoecology 291, 328337.CrossRefGoogle Scholar
Albani, A.D., Serandrei-Barbero, R., 1982. A foraminiferal fauna from the lagoon of Venice, Italy. Journal of Foraminiferal Research 12, 234241.CrossRefGoogle Scholar
Alonso-Zarza, A.M., Dorado-Valino, M., Valdeolmillos-Rodríguez, A., Ruiz-Zapata, M.B., 2006. A recent analogue for palustrine carbonate environments: the Quaternary deposits of Las Tablas de Daimiel wetlands, Ciudad Real, Spain. GSA Special Papers 416, 153168.Google Scholar
Alonso-Zarza, A.M., Wright, V.M., 2010. Palustrine carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Settings: Facies. Environments and Processes. Developments in Sedimentology, vol. 61. Elsevier, Amsterdam, pp. 103132.Google Scholar
Amorosi, A., Bracone, V., Di Donato, V., Rosskopf, C.M., Aucelli, P.P.C., 2009. The Plio-Pleistocene succession between Trigno and Fortore rivers (Molise and Apulia Apennines): stratigraphy and facies characteristics. GeoActa 8, 112 Google Scholar
Amorosi, A., Pacifico, A., Rossi, V., Ruberti, D., 2012. Late Quaternary incision and deposition in an active volcanic setting: the Volturno valley fill, southern Italy. Sedimentary Geology 282, 307320.CrossRefGoogle Scholar
Amorosi, A., Rossi, V., Vella, C., 2013. Stepwise post-glacial transgression in the Rhone Delta area as revealed by high-resolution core data. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 314326.CrossRefGoogle Scholar
Arnott, R.W.C., 1992. Ripple cross-stratification in swaley cross-stratified sandstones of the Chungo member, mount Yamnuska, Alberta. Canadian Journal of Earth Sciences 29, 18021805 CrossRefGoogle Scholar
Artoni, A., 2013. The Pliocene-Pleistocene stratigraphic and tectonic evolution of the central sector of the western Periadriatic basin of Italy. Marine and Petroleum Geology 42, 82106.CrossRefGoogle Scholar
Athersuch, J., Horne, D.J., Whittaker, J.E., 1989. Marine and Brackish Water Ostracods. E.J. Brill, Leiden, p. 343. Synopses of the British fauna, New Series, no . 43.CrossRefGoogle Scholar
Bennett, K., 2009. “psimpolľand “pscomb”: C Programs for Analysing Pollen Data and Plotting Pollen Diagrams (version 4.27). Available online from: Queen’s University Quaternary Geology program at URL http://www.chrono.qub.ac.uk/psimpoll.html.Google Scholar
Bernasconi, M.P., Robba, E., 1993. Molluscan palaeoecology and sedimentological features: an integrated approach from the Miocene Meduna section, northern Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 100, 267290.CrossRefGoogle Scholar
Bertini, A., 2000. Pollen record from Colle Curti and Cesi: early and middle Pleistocene mammal sites in the UmbroeMarchean Apennine mountains (central Italy). Journal of Quaternary Science 15, 825840.3.0.CO;2-6>CrossRefGoogle Scholar
Bertini, A., 2010. Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quaternary International 225, 524.CrossRefGoogle Scholar
Bertini, A., Toti, F., Marino, M., Ciaranfi, N., 2015. Vegetation and climate across the earlyemiddle Pleistocene transition at Montalbano Jonico, southern Italy. Quaternary International 383, 7488.CrossRefGoogle Scholar
Bigi, S., Conti, A., Casero, P., Ruggiero, L., Recanati, R., Lipparini, L., 2013. Geological model of the central Periadriatic basin (Apennines, Italy). Marine and Petroleum Geology 42, 107121 CrossRefGoogle Scholar
Bourgeois, J., Leithold, E.L., 1984. Wave-worked conglomerates — Depositional processes and criteria for recognition. In: Koster, E.H., Steel, R.J. (Eds.), Sedi-mentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoirs, vol. 10, pp. 331343.Google Scholar
Bracone, V., Amorosi, A., Aucelli, P.P.C., Ciampo, G., Di Donato, V., Rosskopf, C.M., 2012a. Palaeoenvironmental evolution of the Plio-Pleistocene Molise Periadriatic basin (southern Apennines, Italy): insight from Montesecco clays. Italian Journal of Geosciences 131, 272285.Google Scholar
Bracone, V., Amorosi, A., Aucelli, P.P.C., Rosskopf, C.M., Scarciglia, F., Di Donato, V., Esposito, P., 2012b. The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence-stratigraphic perspective. Basin Research 24, 213233.CrossRefGoogle Scholar
Breber, P., Scirocco, T., Cilenti, L., 2000. An assessment of the fishery polential of Lesina lagoon (S. Italy) based on the composition and zonation of the macrobenthic fauna. Periodicum Biologorum 102 (1), 553556.Google Scholar
Cantalamessa, G., Centamore, E., Colalongo, M.L., Micarelli, A., Nanni, T., Pasini, G., Potetti, M., Ricci Lucchi, F., with the collaboration of Cristallini, C., Di Lorito, L., 1986. Il Plio-Pleistocene delle Marche. In: Centamore, E., Deiana, G. (Eds.), La Geologia delle Marche. Studi Geologici Camerti, vol. Speciale, pp. 6181.Google Scholar
Cantalamessa, G., Di Celma, C., 2004. Sequence response to syndepositional regional uplift: insights from high-resolution sequence stratigraphy of late Early Pleistocene strata, Periadriatic Basin, central Italy. Sedimentary Geology 164, 283309.CrossRefGoogle Scholar
Cantalamessa, G., Di Celma, C., Potetti, M., Lori, P., Didaskalou, P., Albianelli, A., Napoleone, G., 2009. Climatic control on deposition of upper Pliocene deep-water gravity-driven strata in the Apennines foredeep (central Italy): correlations to the marine oxygen sea isotope record. In: Kneller, B., Martinsen, O.J., McCaffrey, B. (Eds.), External Controls on Deep Water Depositional Systems: Climate, Sea-level, and Sediment Flux. SEPM Special Publication, vol. 92, pp. 247259.Google Scholar
Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J.E.T., Massari, F., Rio, D., 2005. Climatic Patterns Revealed by Pollen and Oxygen Isotope Records across the Matuyama-brunhes Boundary in the Central Mediterranean (Southern Italy). Geological Society, London, pp. 159182. Special Publications 247.Google Scholar
Centamore, E., Nisio, S., 2003. Effects of uplift and tilting in the central-northern Apennines (Italy). Quaternary International 101-102, 93101.Google Scholar
Church, M.J., Middleton, G.V., 2003. Encyclopedia of Sediments and Sedimentary Rocks. Springer-Verlag, New York, p. 821.Google Scholar
Clifton, H.E., Dingler, J.R., 1984. Wave-formed structures and paleoenvironmental reconstruction. Marine Geology 60, 165198 CrossRefGoogle Scholar
Clifton, H.E., Thompson, J.K., 1978. Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology 48, 12931302 Google Scholar
Cognetti, G., Maltagliati, F., 2000. Biodiversity and adaptive mechanisms in brackish water fauna. Marine Pollution Bulletin 40, 714.CrossRefGoogle Scholar
Coltorti, M., Pieruccini, P., 2006. The last interglacial pedocomplexes in the litho and morpho-stratigraphical framework of the central-northern Apennines (Central Italy). Quaternary International 156-157, 118132.CrossRefGoogle Scholar
Corrado, P., Magri, D., 2011. A late early Pleistocene pollen record from Fontana Ranuccio (central Italy). Journal of Quaternary Science 26, 335344.CrossRefGoogle Scholar
Di Celma, C., 2011. Sedimentology, architecture, and depositional evolution of a coarse-grained submarine canyon fill from the Gelasian (early Pleistocene) of the Peri-Adriatic basin, Offida, central Italy. Sedimentary Geology 238, 233253.CrossRefGoogle Scholar
Di Celma, C., Cantalamessa, G., Didaskalou, P., 2013. Stratigraphic organization and predictability of mixed coarse- and fine-grained successions in an upper slope turbidite system of the Peri-Adriatic basin. Sedimentology 60, 763799.CrossRefGoogle Scholar
Di Celma, C., Cantalamessa, G., Didaskalou, P., Lori, P., 2010. Sedimentology, architecture, and sequence stratigraphy of coarse-grained, submarine canyon fills from the Pleistocene (Gelasian-Calabrian) of the Peri-Adriatic basin, central Italy. Marine and Petroleum Geology 27, 13401365.CrossRefGoogle Scholar
Di Celma, C., Pieruccini, P., Farabollini, P., 2015. Major controls on architecture, sequence stratigraphy and paleosols of middle Pleistocene continental sediments (“Qc Unit”), eastern central Italy. Quaternary Research 83, 565581.CrossRefGoogle Scholar
Di Celma, C., Ragaini, L., Caffau, M., 2016a. Marine and nonmarine deposition in a long-term low-accommodation setting: an example from the Middle Pleistocene Qm2 unit, eastern Central Italy. Marine and Petroleum Geology 72, 234253.CrossRefGoogle Scholar
Di Celma, C., Teloni, R., Rustichelli, A., 2014. Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill, Monte Ascensione succession (Peri-Adriatic central Italy). International Journal of Earth Sciences (Geologische Rundschau) 103, 843875.CrossRefGoogle Scholar
Di Celma, C., Teloni, R., Rustichelli, A., 2016b. Evolution of the Gelasian (Pleistocene) slope turbidite systems of southern Marche (Peri-Adriatic basin, central Italy). Journal of Maps 12, 137151.CrossRefGoogle Scholar
Di Rita, F., Melis, R.T., 2013. The cultural landscape near the ancient city of Tharros (central West Sardinia): vegetation changes and human impact. Journal of Archaeological Science 40, 42714282.CrossRefGoogle Scholar
Di Rita, F., Celant, A., Milli, S., Magri, D., 2015. Lateglacial—early Holocene vegetation history of the Tiber delta (Rome, Italy) under the influence of climate change and sea level rise. Review of Palaeobotany and Palynology 218, 204216.CrossRefGoogle Scholar
Di Rita, F., Simone, O., Caldara, M., Gehrels, W.R., Magri, D., 2011. Holocene environmental changes in the coastal Tavoliere Plain (Apulia, southern Italy): a multiproxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 139151.CrossRefGoogle Scholar
Doglioni, C., 1991. A proposal for the kinematic modelling of W-dipping subductions-possible applications to the Tyrrhenian-Apennines system. Terra Nova 3, 423434.CrossRefGoogle Scholar
Donnici, S., Serandrei-Barbero, R., Taroni, G., 1997. Living benthic foraminifera in the Lagoon of Venice (Italy): population dynamics and its significance. Marine Micropaleontology 43, 440454.CrossRefGoogle Scholar
Dott, R.H. Jr., Bourgeois, J., 1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin 93, 663680.2.0.CO;2>CrossRefGoogle Scholar
Durand, N., Monger, H.C., Canti, M.G., 2010. Calcium carbonate features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 149194.CrossRefGoogle Scholar
Elliott, M., Dewailly, F., 1995. The structure and components of European fish assemblages. Netherland Journal of Aquatic Ecology 29, 397417.CrossRefGoogle Scholar
Follieri, M., Magri, D., Sadori, L., 1988. 250000-year pollen record from Valle di Castiglione (Roma). Pollen et Spores 30, 329356.Google Scholar
Franco, A., Franzoi, P., Malavasi, S., Riccato, F., Torricelli, P., 2006. Fish assemblages in different shallow water habitats of the Venice Lagoon. Hydrobiologia 555, 159174.CrossRefGoogle Scholar
Frébourg, G., Hasler, C-A., Davaud, E., 2012. Uplifted marine terraces of the Akamas Peninsula (Cyprus): evidence of climatic conditions during the Late Quaternary highstands. Sedimentology 59, 14091425 CrossRefGoogle Scholar
Freytet, P., Verrecchia, E.P., 2002. Lacustrine and palustrine carbonate petrography: an overview. Journal of Paleolimnology 27, 221237.CrossRefGoogle Scholar
Frenzel, P., Boomer, I., 2005. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 6892.CrossRefGoogle Scholar
Fretter, V., Graham, A., 1978. The prosobranch Molluscs of Britain and Denmark. Part 3. Journal Molluscan Studies 5, 101151 Google Scholar
Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M., 2013. Late Miocene-Middle Pleistocene sequences in the Po Plain e Northern Adriatic Sea (Italy): the stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology 42, 5081.CrossRefGoogle Scholar
Grigorovich, I.A., Mills, E.L., Richards, C.B., Breneman, D., Ciborowski, J.J.H., 2005. European valve snail Valvata piscinalis (Muller) in the Laurentian Great lakes basin. Journal of Great Lakes Research 31, 135143 CrossRefGoogle Scholar
Guelorget, O., Perthuisot, J.P., 1992. Paralic ecosystems: biological organization and functioning. Vie et Milieu 42, 215251.Google Scholar
Gunderson, K.L., Pazzaglia, F.J., Picotti, V., Anastasio, D.J., Kodama, K.P., Rittenour, T., Frankel, K.F., Ponza, A., Berti, C., Negri, A., Sabbatini, A., 2014. Unraveling tectonic and climatic controls on synorogenic stratigraphy. Geological Society of America Bulletin 126, 532552.CrossRefGoogle Scholar
Hamerlynck, O., Cattrijsse, A., 1994. The food of Pomatoschistus minutus (Pisces, Gobiidae) in Belgian coastal waters, and a comparison with the food of its potential competitor P. lozanoi . Journal of Fish Biology 44, 753771.CrossRefGoogle Scholar
Harrison, T.D., Whitfield, A.K., 1995. Fish community structure in three temporarily open/closed estuaries on the Natal coast. J.L.B. Smith Ichthyological Bulletin 64, 180.Google Scholar
Hart, B.S., Plint, A.G., 1989. Gravelly shoreface deposits: a comparison of modern and ancient facies sequences. Sedimentology 36, 551557.CrossRefGoogle Scholar
Kiener, A., Spillmann, C.J., 1969. Contributions a l’étude systématique et écologique des athérines des cotes françaises. Mémoires du Muséum National d’Histoire Naturelle, Série A. Zoologie 60, 3374.Google Scholar
Kraus, M.J., 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews 47, 4170.CrossRefGoogle Scholar
Leckie, D.A., Walker, R.G., 1982. Storm- and tide-dominated shorelines in Late Cretaceous Moosebar-Lower Gates interval - outcrop equivalents of deep basin gas trap in western Canada. American Association of Petroleum Geologists Bulletin 66, 138157 Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20.Google Scholar
MacNeil, A.J., Jones, B., 2006. Palustrine deposits on Late Devonian coastal plain e sedimentary attributes and implications for concepts of carbonate sequence stratigraphy. Journal of Sedimentary Research 76, 292309.CrossRefGoogle Scholar
Magri, D., Palombo, M.R., 2013. Early to middle Pleistocene dynamics of plant and mammal communities in south west Europe. Quaternary International 288, 6372.CrossRefGoogle Scholar
Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227245.CrossRefGoogle Scholar
Manzi, G., Magri, D., Milli, S., Palombo, M.R., Margari, V., Celiberti, V., Barbieri, M., Barbieri, M., Melis, R.T., Rubini, M., Ruffo, M., Saracino, B., Tzedakis, P.C., Zarattini, A., Biddittu, I., 2010. The new chronology of the Ceprano calvarium (Italy). Journal of Human Evolution 59, 580585.CrossRefGoogle ScholarPubMed
Marasti, R., 1991. Bivalvi polisiringi del Pliocene, viventi nel Mediterraneo: distribuzione e osservazioni paleoecologiche. 2° Parte. (Pliocene polysyringian Bivalves living in the mediterranean: distribution and paleoecological observations. Part 2). L’Ateneo Parmense. Acta Naturalia 26, 3963.Google Scholar
Mazza, P., Bertini, A., 2013. Were Pleistocene hippopotamuses exposed to climate-driven body size changes? BOREAS 42, 194209.CrossRefGoogle Scholar
Meish, C., 2000. Freshwater ostracoda of western and central Europe. In: Schwoerbel, J., Zwick, P. (Eds.), Süesswasserfauna von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, Berlin, p. 522 no. 8/3.Google Scholar
Melis, R., Bernasconi, M.P., Colizza, E., Di Rita, F., Schneider, E.E., Forete, E., Montenegro, M.E., Pugliese, N., Ricci, M., 2015. Late Holocene palae-oenvironmental evolution of the northern harbour at the Elaiussa Sebaste archaeological site (south-eastern Turkey): evidence from core ELA6. Turkish Journal of Earth Sciences 24, 566584.CrossRefGoogle Scholar
Nara, M., 2002. Crowded Rosselia socialis in Pleistocene inner shelf deposits: benthic Paleoecology during rapid sea-level rise. Palaios 17, 268276.2.0.CO;2>CrossRefGoogle Scholar
Neale, J.V., 1988. Ostracods and paleosalinity reconstruction. In: De Deckker, P., Colin, J.-P., Peypouquet, J.-P. (Eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam, pp. 125155.Google Scholar
Nolf, D., 2013. The Diversity of Fish Otoliths Past and Present. Royal Belgian Institute of Natural Sciences, Bruxelles, p. 350.Google Scholar
Nordlie, F.C., 2003. Fish communities of estuarine salt marshes of Eastern North America, and comparison with temperate estuaries of other continents. Reviews in Fish Biology and Fisheries 13, 281325.CrossRefGoogle Scholar
Orain, R., Lebreton, V., Ermolli, E.R., Combourieu-Nebout, N., Semah, A.-M., 2013. Carya as marker for tree refuges in southern Italy (Boiano basin) at the Middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 295302.CrossRefGoogle Scholar
Orain, R., Russo Ermolli, E., Lebreton, V., Di Donato, V., Bahain, J.-J., Semah, A.-M., 2015. Vegetation sensitivity to local environmental factors and global climate changes during the Middle Pleistocene in southern Italy—A case study from the Molise Apennines. Review of Palaeobotany and Palynology 220, 6977.CrossRefGoogle Scholar
Ori, G.G., Serafini, G., Visentin, C., Ricci Lucchi, F., Casnedi, R., Colalongo, M.L., Mosna, S., 1991. The Plio-Pleistocene Adriatic foredeep (Marche and Abruzzo, Italy): an integrated approach to surface and subsurface geology. In: Third Conference of European Association of Petroleum Geology, Adriatic Foredeep Field Trip Guidebook. Agip S.p.A, Florence, Italy. Milano, p. 85.Google Scholar
Paterson, A.W., Whitfield, A.K., 2000. The ichthyofauna associated with an intertidal creek and adjacent eelgrass beds in the Kariega Estuary, South Africa. Environmental Biology of Fishes 58, 145156.CrossRefGoogle Scholar
Pemberton, S.G., MacEachern, J.A., Dashtgard, S.E., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., 2012. Shorefaces. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, vol. 64. Elsevier, Amsterdam, pp. 563603.CrossRefGoogle Scholar
Peres, J.M., Picard, J., 1964. Nouveau manuel de bionomie bentique de la Mer Méditerranee. Recueil des Travaux de la Station Marine d’Endoume 31, 5137.Google Scholar
Pizzi, A., 2003. Plio-Quaternary uplift rates in the outer zone of central Apennines fold-and-thrust belt, Italy. Quaternary International 101-102, 229237.CrossRefGoogle Scholar
Platt, N.H., Wright, V.P., 1992. Palustrine carbonates at the Florida Everglades: towards an exposure index for the freshwater environment. Journal of Sedimentary Petrology 62, 10581071.Google Scholar
Plint, A.G., McCarthy, P.J.M., Faccini, U.F., 2001. Nonmarine sequence stratigraphy: updip expression of sequence boundaries and systems tracts in a high-resolution framework, Cenomanian Dunvegan Formation, Alberta foreland basin, Canada. American Association of Petroleum Geologists Bulletin 85, 19672001.Google Scholar
Plint, A.G., Nummedal, D., 2000. The falling stage systems tract: recognition and importance in sequence stratigraphy analysis. In: Hunt, D., Gawthorpe, R.L. (Eds.), Sedimentary Responses to Forced Regression, vol. 172. Geol. Soc. London Spec. Publ., pp. 117 Google Scholar
Reuter, M., Piller, W.E., Harzhauser, M., Kroh, A., Berning, B., 2009. A fossil Everglades-type marl prairie and its paleoenvironmental significance. Palaios 24, 747755.CrossRefGoogle Scholar
Ricci Lucchi, F., 1986. The Oligocene to Recent foreland basins in the northern Apennines. In: Allen, P.A., Homewood, P. (Eds.), Foreland Basins, vol. 8. Int. Assoc. Sedimentol. Spec. Publ., pp. 105139.Google Scholar
Rossi, V., Amorosi, A., Sarti, G., Potenza, M., 2011. Influence of inherited topography on the Holocene sedimentary evolution of coastal systems: an example from Arno coastal plain (Tuscany, Italy). Geomorphology 135, 117128.CrossRefGoogle Scholar
Russo Ermolli, E., 1994. Analyse pollinique de la succession lacustre pléistocéne du Vallo di Diano (Campanie, Italie). Annales de la Société géologique de Belgique 117, 333354.Google Scholar
Russo Ermolli, E., Aucelli, P.P.C., Di Rollo, A., Mattei, M., Petrosino, P., Porreca, M., Rosskopf, C.M., 2010. An integrated stratigraphical approach to the Middle Pleistocene succession of the Sessano basin (Molise, Italy). Quaternary International 225, 114127.CrossRefGoogle Scholar
Russo Ermolli, E., Di Donato, V., Martín-Fernandez, J.A., Orain, R., Lebreton, V., Piovesan, G., 2015. Vegetation patterns in the Southern Apennines (Italy) during MIS 13: deciphering pollen variability along a NW-SE transect. Review of Palaeobotany and Palynology 218, 167183.CrossRefGoogle Scholar
Sadori, L., Giardini, M., Chiarini, E., Mattei, M., Papasodaro, F., Porreca, M., 2010. Pollen and macrofossil analyses of Pliocene lacustrine sediments (Salto river valley, Central Italy). Quaternary International 225, 4457.CrossRefGoogle Scholar
Sarti, G., Rossi, V., Amorosi, A., Bini, M., Giacomelli, S., Pappalardo, M., Ribecai, C., Ribolini, A., Sammartino, I., 2015. Climatic signature of two midelate Holocene fluvial incisions formed under sea-level highstand conditions (Pisa coastal plain, NW Tuscany, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 424, 183195 CrossRefGoogle Scholar
Seike, K., Yanagishima, S., Nara, M., Sasaki, T., 2011. Large Macaronichnus in modern shoreface sediments: identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 224229.CrossRefGoogle Scholar
Serandrei-Barbero, R., Albani, A., Donnici, S., Rizzetto, F., 2006. Past and recent sedimentation rates in the lagoon of Venice (northern Italy). Estuarine, Coastal and Shelf Science 69, 255269.CrossRefGoogle Scholar
Serandrei-Barbero, R., Bertoldi, R., Canali, G., Donnici, S., Lezziero, A., 2005. Paleoclimatic record of the past 22,000 years in Venice (Northearn Italy): Biostratigraphic evidence and chronology. Quaternary International 140-141, 3752.CrossRefGoogle Scholar
Stoops, G., 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison WI, p. 184.Google Scholar
Tzedakis, P.C., Hooghiemstra, H., Palike, H., 2006. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science Reviews 25, 34163430.CrossRefGoogle Scholar
Vatova, A., 1981. Recherches comparatives sur le “valli” salées de peche de la haute Adriatique. Rapport Commission international de la Mer Méditerranée 27, 9394.Google Scholar
Walker, Plint, 1992. Wave- and storm-dominated shallow marine systems. In: Walker, R.G., James, N.P. (Eds.), Facies Models-response to Sea-level Changes: St John’s, Newfoundland, Canada. Geological Association of Canada, pp. 219238.Google Scholar
Waren, A., 1996. Ecology and systematics of the north European species of Rissoa and Pusillina (Prosobranchia: Rissoidae). Journal of the Marine Biological Association 76, 10131059.CrossRefGoogle Scholar
Webb, C.J., 1980. Systematics of the Pomatoschistus minutus complex (Teleostei: Gobiidae). Philosophical Transactions of the Royal Society 291, 201241.Google Scholar
Zecchin, M., Brancolini, G., Tosi, L., Rizzetto, F., Caffau, M., Baradello, L., 2009. Anatomy of the Holocene succession of the southern Venice lagoon revealed by very high-resolution seismic data. Continental Shelf Research 29, 13431359.CrossRefGoogle Scholar
Supplementary material: PDF

Pieruccini et al. Supplementary Material

Supplementary Material

Download Pieruccini et al. Supplementary Material(PDF)
PDF 113.7 KB