Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T21:36:40.847Z Has data issue: false hasContentIssue false

Sea-level history of past interglacial periods from uranium-series dating of corals, Curaçao, Leeward Antilles islands

Published online by Cambridge University Press:  05 June 2012

Daniel R. Muhs*
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
John M. Pandolfi
Affiliation:
Australian Research Council Centre of Excellence for Coral Reef Studies and School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
Kathleen R. Simmons
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
R. Randall Schumann
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
*

Abstract

Curaçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from − 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C.S. The marine terraces of Aruba, Bonaire, and Curaçao, Netherlands Antilles. Annals of the Association of American Geographers 51, (1961). 102123.CrossRefGoogle Scholar
Bak, R.P.M. Coral reefs and their zonation in Netherlands Antilles. American Association of Petroleum Geologists Studies in Geology 4, (1977). 316.Google Scholar
Bender, M.L., Fairbanks, R.G., Taylor, F.W., Matthews, R.K., Goddard, J.G., and Broecker, W.S. Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies. Geological Society of America Bulletin, Part I 90, (1979). 577594.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.Google Scholar
Berger, A., and Loutre, M.F. An exceptionally long interglacial ahead?. Science 297, (2002). 12871288.Google Scholar
Bowen, D.Q. Sea level ~ 400 000 years ago (MIS 11): analogue for present and future sea-level?. Climate of the Past 6, (2010). 1929.CrossRefGoogle Scholar
Bruckner, A.W., and Bruckner, R.J. The recent decline of Montastraea annularis (complex) coral populations in western Curaçao: a cause for concern?. International Journal of Tropical Biology 54, (2006). 4558.Google Scholar
Camoin, G.F., Ebren, Ph., Eisenhauer, A., Bard, E., and Faure, G. A 300 000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 175, (2001). 325341.CrossRefGoogle Scholar
Chappell, J. Geology of coral terraces, Huon Peninsula, New Guinea: a study of Quaternary tectonic movements and sea-level changes. Geological Society of America Bulletin 85, (1974). 553570.Google Scholar
Chen, J.H., Curran, H.A., White, B., and Wasserburg, G.J. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103, (1991). 8297.2.3.CO;2>CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, (2000). 1733.Google Scholar
De Buisonjé, P.H. Neogene and Quaternary geology of Aruba, Curaçao and Bonaire (Netherlands Antilles). Natuurwetenschappelijke Studiekring Voor Suriname en de Nederlandse Antillen 78, (1974). Utrechet, Netherlands, 293 pp. Google Scholar
Delanghe, D., Bard, E., and Hamelin, B. New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Marine Chemistry 80, (2002). 7993.Google Scholar
Dutton, A., Bard, E., Antonioli, F., Esat, T.M., Lambeck, K., and McCulloch, M.T. Phasing and amplitude of sea-level and climate change during the penultimate interglacial. Nature Geoscience 2, (2009). 355359.Google Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette, J.J. The Laurentide and Innuitian ice sheets during the last glacial maximum. Quaternary Science Reviews 21, (2002). 931.Google Scholar
Edwards, R.L., Cheng, H., Murrell, M.T., and Goldstein, S.J. Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: implications for Quaternary climate change. Science 276, (1997). 782786.Google Scholar
Fletcher, C.H., Bochicchio, C., Conger, C.L., Engels, M.S., Feirstein, E.J., Frazer, N., Glenn, C.R., Grigg, R.W., Grossman, E.E., Harney, J.N., Isoun, E., Murray-Wallace, C.V., Rooney, J.J., Rubin, K.H., Sherman, C.E., and Vitousek, S. Geology of Hawaii reefs. Riegl, B.M., and Dodge, R.E. Coral Reefs of the USA. (2008). Springer Science, 435487.Google Scholar
Flint, R.F. Glacial and Quaternary geology. (1971). John Wiley and Sons, Inc., New York. 892 pp.Google Scholar
Focke, J.W. Limestone cliff morphology on Curaçao (Netherlands Antilles), with special attention to the origin of notches and vermetid/coralline algal surf benches (“cornices”, “trottoirs”). Zeitschrift für Geomorphologie 22, (1978). 329349.Google Scholar
Gallup, C.D., Cheng, H., Taylor, F.W., and Edwards, R.L. Direct determination of the timing of sea level change during Termination II. Science 295, (2002). 310313.Google Scholar
Gallup, C.D., Edwards, R.L., and Johnson, R.G. The timing of high sea levels over the past 200,000 years. Science 263, (1994). 796800.Google Scholar
Goreau, T.F., and Goreau, N.I. The ecology of Jamaican coral reefs. II. Geomorphology, zonation, and sedimentary phases. Bulletin of Marine Science 23, (1973). 399464.Google Scholar
Hamelin, B., Bard, E., Zindler, A., and Fairbanks, R.G. 234U/238U mass spectrometry of corals: how accurate is the U-Th age of the last interglacial period?. Earth and Planetary Science Letters 106, (1991). 169180.Google Scholar
Harmon, R.S., Mitterer, R.M., Kriausakul, N., Land, L.S., Schwarcz, H.P., Garrett, P., Larson, G.J., Vacher, H.L., and Rowe, M. U-series and amino-acid racemization geochronology of Bermuda: implications for eustatic sea-level fluctuation over the past 250,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 44, (1983). 4170.Google Scholar
Hearty, P.J., Kindler, P., Cheng, H., and Edwards, R.L. A + 20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, (1999). 375378.2.3.CO;2>CrossRefGoogle Scholar
Herweijer, J.P., and Focke, J.W. Late Pleistocene depositional and denudational history of Aruba, Bonaire and Curaçao (Netherlands Antilles). Geologie en Mijnbouw 57, (1978). 177187.Google Scholar
Hippolyte, J.-C., and Mann, P. Neogene-Quaternary tectonic evolution of the Leeward Antilles islands (Aruba, Bonaire, Curaçao) from fault kinematic analysis. Marine and Petroleum Geology 28, (2011). 259277.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. Milankovitch and climate: understanding the response to astronomical forcing. (1984). D. Reidel Publishing Company, Dordrecht. 269305.Google Scholar
Jansen, E., Overpeck, J., Briffa, K.R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.R., Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O., Villalba, R., and Zhang, D. Palaeoclimate. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., and Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, (2009). 863868.Google Scholar
Lambeck, K., Purcell, A., and Dutton, A. The anatomy of interglacial sea levels: the relationship between sea levels and ice volumes during the Last Interglacial. Earth and Planetary Science Letters 315–316, (2012). 411.Google Scholar
Ludwig, K.R. Users Manual for Isoplot/Ex, rev. 2.49. Berkeley Geochronology Center, Berkeley, California, Special Publication No. 1a. (2001). 55 pp.Google Scholar
Ludwig, K.R., Simmons, K.R., Szabo, B.J., Winograd, I.J., Landwehr, J.M., Riggs, A.C., and Hoffman, R.J. Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science 258, (1992). 284287.Google Scholar
Lundberg, J., and McFarlane, D. Isotope stage 11 sea level in the Netherlands Antilles. Geological Society of America Abstracts with Programs 34, 6 (2002). 31 Google Scholar
McFarlane, D.A., and Lundberg, J. A middle Pleistocene age and biogeography for the extinct rodent Megalomys curazensis from Curaçao, Netherlands Antilles. Caribbean Journal of Science 38, (2002). 278281.Google Scholar
McMurtry, G.M., Tappin, D.R., Sedwick, P.N., Wilkinson, I., Fietzke, J., and Sellwood, B. Elevated marine deposits in Bermuda record a late Quaternary megatsunami. Sedimentary Geology 200, (2007). 155165.Google Scholar
Mesolella, K.J., Matthews, R.K., Broecker, W.S., and Thurber, D.L. The astronomical theory of climatic change: Barbados data. Journal of Geology 77, (1969). 250274.Google Scholar
Mesolella, K.J., Sealy, H.A., and Matthews, R.K. Facies geometries within Pleistocene reefs of Barbados, West Indies. American Association of Petroleum Geologists Bulletin 54, (1970). 18991917.Google Scholar
Meyer, D.L., Bries, J.M., Greenstein, B.J., and Debrot, A.O. Preservation of in situ reef framework in regions of low hurricane frequency: Pleistocene of Curaçao and Bonaire, southern Caribbean. Lethaia 36, (2003). 273286.CrossRefGoogle Scholar
Milne, G.A., and Mitrovica, J.X. Searching for eustasy in deglacial sea-level histories. Quaternary Science Reviews 27, (2008). 22922302.Google Scholar
Mitrovica, J.X., and Peltier, W.R. On postglacial geoid subsidence over the equatorial oceans. Journal of Geophysical Research 96, (1991). 2005320071.CrossRefGoogle Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., Mitrovica, J.X., and Laurel, D. Sea-level history during the Last Interglacial complex on San Nicolas Island, California: implications for glacial isostatic adjustment processes, paleozoogeography and tectonics. Quaternary Science Reviews 37, (2012). 125.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., and Halley, R.B. Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida. Quaternary Science Reviews 30, (2011). 570590.CrossRefGoogle Scholar
Muhs, D.R., Simmons, K.R., and Steinke, B. Timing and warmth of the last interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America. Quaternary Science Reviews 21, (2002). 13551383.Google Scholar
Muhs, D.R., Wehmiller, J.F., Simmons, K.R., and York, L.L. Quaternary sea level history of the United States. Gillespie, A.R., Porter, S.C., and Atwater, B.F. The Quaternary Period in the United States. (2004). Elsevier, Amsterdam. 147183.Google Scholar
Mylroie, J.E. Late Quaternary sea-level position: evidence from Bahamian carbonate deposition and dissolution cycles. Quaternary International 183, (2008). 6175.Google Scholar
Nakada, M., and Lambeck, K. Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophysical Journal International 96, (1989). 497517.Google Scholar
Neumann, A.C., and MacIntyre, I. Reef response to sea level rise: keep-up, catch-up or give-up. Proceedings of the Fifth International Coral Reef Congress 3, (1985). 105110.Google Scholar
Pandolfi, J.M. Numerical and taxonomic scale of analysis in paleoecological data sets: examples from neo-tropical Pleistocene reef coral communities. Journal of Paleontology 75, (2001). 546563.Google Scholar
Pandolfi, J.M. A new, extinct Pleistocene reef coral from the Montastraeaannularis” species complex. Journal of Paleontology 81, (2007). 472482.Google Scholar
Pandolfi, J.M., and Jackson, J.B.C. Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecological Monographs 71, (2001). 4967.Google Scholar
Pandolfi, J.M., Llewellyn, G., and Jackson, J.B.C. Pleistocene reef environments, constituent grains, and coral community structure: Curaçao, Netherlands Antilles. Coral Reefs 18, (1999). 107122.Google Scholar
Potter, E.-K., and Lambeck, K. Reconciliation of sea-level observations in the western North Atlantic during the last glacial cycle. Earth and Planetary Science Letters 217, (2003). 171181.Google Scholar
Prentice, C.S., Mann, P., Crone, A.J., Gold, R.D., Hudnut, K.W., Briggs, R.W., Koehler, R.D., and Jean, P. Seismic hazard of the Enriquillo-Plantain Garden fault in Haiti inferred from palaeoseismology. Nature Geoscience 3, (2010). 789793.CrossRefGoogle Scholar
Radtke, U., Schellmann, G., Scheffers, A., Kelletat, D., Kromer, B., and Kasper, H.U. Electron spin resonance and radiocarbon dating of coral deposited by Holocene tsunami events on Curaçao, Bonaire and Aruba (Netherlands Antilles). Quaternary Science Reviews 22, (2003). 13091315.Google Scholar
Raymo, M.E., and Mitrovica, J.X. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, (2012). 453456.CrossRefGoogle ScholarPubMed
Rohling, E.J., Braun, K., Grant, K., Kucera, M., Roberts, A.P., Siddall, M., and Trommer, G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth and Planetary Science Letters 291, (2010). 97105.Google Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, Ch., and Kucera, M. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, (2009). 500504.Google Scholar
Schellmann, G., and Radtke, U. A revised morpho- and chronostratigraphy of the Late and Middle Pleistocene coral reef terraces on southern Barbados (West Indies). Earth-Science Reviews 64, (2004). 157187.Google Scholar
Schellmann, G., Radtke, U., Scheffers, A., Whelan, F., and Kelletat, D. ESR dating of coral reef terraces on Curaçao (Netherlands Antilles) with estimates of younger Pleistocene sea level elevations. Journal of Coastal Research 20, (2004). 947957.Google Scholar
Schubert, C., and Szabo, B.J. Uranium-series ages of Pleistocene marine deposits on the islands of Curaçao and La Blanquilla, Caribbean Sea. Geologie en Mijnbouw 57, (1978). 325332.Google Scholar
Sherman, C.E., Fletcher, C.H., and Rubin, K.H. Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. Journal of Sedimentary Research 69, (1999). 10831097.Google Scholar
Shinn, E.A., Lidz, B.H., Kindinger, J.L., Hudson, J.H., and Halley, R.B. Reefs of Florida and the Dry Tortugas: a guide to the modern carbonate environments of the Florida Keys and the Dry Tortugas. (1989). U.S. Geological Survey, St. Petersburg, Florida. 53 pp.Google Scholar
Smith, D.A., and Small, H.J. The CARIB97 high-resolution geoid height model for the Caribbean Sea. Journal of Geodesy 73, (1999). 19.Google Scholar
Stein, M., Wasserburg, G.J., Aharon, P., Chen, J.H., Zhu, Z.R., Bloom, A., and Chappell, J. TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochimica et Cosmochimica Acta 57, (1993). 25412554.Google Scholar
Stirling, C.H., Esat, T.M., Lambeck, K., and McCulloch, M.T. Timing and duration of the last interglacial; evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters 160, (1998). 745762.Google Scholar
Stirling, C.H., Esat, T.M., McCulloch, M.T., and Lambeck, K. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last interglacial. Earth and Planetary Science Letters 135, (1995). 115130.Google Scholar
Thompson, W.G., and Goldstein, S.L. Open-system coral ages reveal persistent suborbital sea-level cycles. Science 308, (2005). 401404.Google Scholar
Thompson, W.G., Spiegelman, M.W., Goldstein, S.L., and Speed, R.C. An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters 210, (2003). 365381.Google Scholar
Vénzina, J., Jones, B., and Ford, D. Sea-level highstands over the last 500,000 years: evidence from the Ironshore Formation on Grand Cayman, British West Indies. Journal of Sedimentary Research 69, (1999). 317327.Google Scholar