Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T16:00:47.420Z Has data issue: false hasContentIssue false

Sea Level History in Beringia During the Past 250,000 Years1

Published online by Cambridge University Press:  20 January 2017

David M. Hopkins*
Affiliation:
U.S. Geological Survey, Menlo Park, California 94025 USA

Abstract

This paper attempts to relate current knowledge of sea-level history in Beringia to the Broecker-van Donk “Termination” concept of climatic and sea-level history. The Einahnuhtan transgression is thought to represent Termination III, which according to Broecker and van Donk, took place about 225,000 y.a. The Kotzebuan transgression is thought to represent a positive fluctuation that modulated the generally falling sea level during the ensuing 100,000 yr. Sea level probably fell to about −135 m in the Bering Sea area during the maximum phase of the penultimate glaciation. The two Pelukian shorelines probably represent Termination II (about 125,000 yr BP in the Broecker-van Donk chronology) and one of the two positive fluctuations that modulated the generally falling sea level of early Wisconsinan time, about 105,000 and 80,000 y.a. according to Broecker and van Donk. Another positive modulation brought sea level to at least −20 m, about 30,000 y.a. Sea level evidently fell to between −90 and −100 m during the late Wisconsinan regression, but a substantial part of the outer Bering shelf remained submerged. Submerged shoreline features at −38m, −30 m, −24 to −20 m, and −12 to −10 m represent stillstands or slight regressions that modulated Termination I, the late Wisconsinan, and early Holocene recovery of sea level.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Publication authorized by the Director, U.S. Geological Survey.

References

Allison, R.C., (1973)Marine paleoclimatology and paleoecology of a Pleistocene invertebrate fauna from Amehitka Island, Aleutian Islands, Alaska. Paleogeography, Paleoclimatology, Paleoecology 13, 1548.Google Scholar
Blanchard, R.L., (1963)Uranium Decay Series Disequilibrium in Age Determination of Marine Calcium Carbonates. Ph.D. thesis Washington University St. Louis 164.Google Scholar
Broecker, W.S., Van Donk, J., (1970)Insolation changes, ice volumes and the O18 record in deep-sea cores. Reviews of Geophysics and Space Physics 8, 169198.Google Scholar
Colinvaux, P.A., (1967)Quaternary vegetational history of Arctic Beringia. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 207231.Google Scholar
Cox, A., Hopkins, D.M., Dalrymple, G.B., (1966)Geomagnetic polarity epochs: Pribilof Islands. Geological Society of America Bulletin 77, 883909.Google Scholar
Creager, J.S., McManus, D.A., (1967)Geology of the floor of Bering and Chukehi Seas—American studies. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 731.Google Scholar
Curray, J.R., Shepard, F.P., (1972)Some major problems of Holocene sea levels. American Quaternary Association (AMQUA) Abstract 1972 1618.Google Scholar
Gard, L.M., Szabo, B.J. Jr., (1971)Age of the Pleistocene deposits at South Bight, Amehitka Island, Alaska. Geological Society of America Abstracts with Programs 1971 577.Google Scholar
Grim, M.S., McManus, D.A., (1970)A shallow seismic-profiling survey of the northern Bering Sea. Marine Geology 8, 293320.CrossRefGoogle Scholar
Hopkins, D.M., (1959)Cenozoic history of the Bering Land Bridge. Science 129, 15191528.Google Scholar
Hopkins, D.M., (1967)Quaternary marine transgression in Alaska. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 4786.Google Scholar
Hopkins, D.M., (1972)The paleogeography and climatic history of Beringia during late Cenozoic time. Internord 12, 121150.Google Scholar
Hopkins, D.M., Macneil, F.S., Leopold, E.B., (1960)The coastal plain at Nome, Alaska—A late Cenozoic type section for the Bering Strait region: 21st International Geological Congress. Copenhagen, Norden4667pt. 4.Google Scholar
Hopkins, D.M., Macneil, F.S., Merklin, R.L., Petrov, O.M., (1965)Quaternary correlations across Bering Strait. Science 147, 11071114.CrossRefGoogle ScholarPubMed
Hopkins, D.M., Rowland, R.W., Patton, W.W., (1972)Middle Pleistocene mollusks from St. Lawrence Island and their significance for the paleo-oceanography of the Bering Sea. Quaternary Research 2, 119134.Google Scholar
Kaufman, A., Broeker, W.S., Ku, T.-L., Thurber, D.L., (1971)The status of U-series methods of mollusk-dating. Geochemica et Cosmochimica Acta 35, 11551183.Google Scholar
Knebel, H.J., (1972)Holocene Sedimentary Framework of the East-Central Bering Sea Continental Shelf. Ph.D. thesisUniversity of Washington 186.Google Scholar
Knebel, H.J., Creager, J.S., (1973)Yukon River: Evidence for extensive migration during the Holocene transgression. Science 179, 12301231.Google Scholar
Kummer, J.T., Creager, J.S., (1971)Marine geology and Cenozoic history of the Gulf of Anadyr. Marine Geology 10, 257280.Google Scholar
McCulloch, D.S., (1967)Quaternary geology of the Alaskan shore of Chukchi Sea. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 91120.Google Scholar
McCulloch, D.S., Taylor, D.W., Rubin, Meyer, (1965)Stratigraphy, non-marine mollusks, and radiometric dates from Quaternary deposits in the Kotzebue Sound area, western Alaska. Journal of Geology 73, 442453.Google Scholar
Merklin, R.L., Petrov, O.M., Amitrov, O.V., (1962)Atlas-Opredelitel' Mollyuskov Chetvertichnykh Otlozheniy Chukotskogo Poluostrova. Atlas-Guide to the mollusks of the Chukotka Peninsula. Akad. Nauk. SSSR, Kom. Izucheniyu Chetvertich. Perioda 57.Google Scholar
Merklin, R.L., Petrov, O.M., Hopkins, D.M., MacNeil, F.S., (1964)Popytka Korrelyatsii Pozdnekaynozoyskikh Morskikh Osadkov Chukotki, Severo-Vostochnoi Sibiri i Zapadnoi Alyaski. Correlation of late Cenozoic deposits of Chukotka, northeastern Siberia and western Alaska. Izv. Akad. Nauk SSSR, Geol. Ser. No. 10 4557[in Russian; English translation in Int. Geol. Rev. 10, 335–344].Google Scholar
Miller, R.D., Dobrovolny, E., (1959)Surficial geology of Anchorage and vicinity, Alaska. U.S. Geological Survey Bulletin 1093, 128.Google Scholar
Moore, D.G., (1964)Acoustic-reflection reconnaissance of continental shelves—eastern Bering and Chukchi Seas. Miller, R.L., Papers in Marine Geology Shepard Commemorative Volume McMillan New York 319362.Google Scholar
Mörner, N.A., (1971)The position of the ocean level during the interstadial at about 30,000 B.P.—a discussion from a climatic-geologic point of view. Canadian Journal of Earth Science 8, 132143.CrossRefGoogle Scholar
Payne, T.G., (1952)Geology of the Arctic Slope of Alaska. U.S. Geological Survey Oil and Gas Map OM-126 .Google Scholar
Petrov, O.M., (1966)Stratigrafiya i Fauna Morskikh Mollyuskov Chertvertichnykh Otlozhenii Chukotskogo Poluostrova. Stratigraphy and fauna of marine mollusks in the Quaternary deposite of the Chukotsk Peninsula. Akad Nauk SSSR, Geol. Inst. Trudy 155, Izd-vo “Nauka” Moskova 288.Google Scholar
Petrov, O.M., (1967)Paleogeography of chukotka during Neogene and Quaternary time. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 144171.Google Scholar
Petrov, O.M., (1969)Antropogenovye Morskie Mollyuski Severnoi Evrazii i ikh Znachenie dlya Stratigrafi. Anthropogene marine mollusks and their significance for stratigraphy. Ospovnye Problemy Geologii Antropogena Evrazii. Basic problems in the geology of the Anthropogene of Eurasia Akad Nauk SSSR, Geol. Inst., Izd-vo Nauka 94100.Google Scholar
Petrov, O.M., Khoreva, I.M., (1968)Korrelyatsi Pozdneneogenovykh i Chetvertichnykh Otlozheniy Kraineveo Severo-Vostoka SSSR i Alyaski. Correlation of upper Neogene and Quaternary deposits of the extreme northeast of the USSR and Alaska. Granitsa Tretichnogo i Chetvertichnogo Periodov. Boundary of Tertiary and Quaternary Periods. Mezhdunarodnogo Geologicheskogo Kongressa 23rd, Doklady Sovetskikh Geologov, Izd-vo Nauka 7075(In Russian with English Abstract).Google Scholar
Rowland, R.W., (1973)Benthic fauna of northern Bering Sea. Ph.D. thesisUniversity of California Davis 234.Google Scholar
Sackett, W.M., (1958)Ionium-Uranium Ratios in Marine Deposited Calcium Carbonates and Related Materials. Ph.D. thesisWashington University St. Louis.Google Scholar
Sainsbury, C.L., (1967a)Quaternary geology of western Seward Peninsula, Alaska. Hopkins, D.M., The Bering Land Bridge Stanford University Press Stanford 121143.Google Scholar
Sainsbury, C.L., (1967b)Upper Pleistocene features in the Bering Strait area. U.S. Geological Survey Professional Paper 575-D D203D213.Google Scholar
Schmoll, H.R., Szabo, B.J., Rubin, M., Dobrovolny, E., (1972)Radiometric dating of marine shells from the Bootlegger Cove Clay, Anchorage area, Alaska. Geological Society of America Bulletin 83, 11071114.CrossRefGoogle Scholar
Scholl, D.W., Hopkins, D.M., (1969)Newly discovered Cenozoic basins, Bering shelf, Alaska. American Association of Petroleum Geologists Bulletin 53, 20672078.Google Scholar
Sellmann, P.V., Brown, J., (1973)Stratigraphy and diagenesis of perennially frozen sediments in the Barrow, Alaska, region. in pressProceedings of the Second International Permafrost Conference Yakutsk, U.S.S.R.Google Scholar
Steinen, R.P., Habrison, R.S., Matthews, R.K., (1973)Eustatic low stand of sea level between 125,000 and 105,000 B.P.: Evidence from the subsurface of Barbados, West Indies. Geological Society of America Bulletin 84, 6370.Google Scholar
Verba, M.L., Gapanenko, G.I., Ivanov, S.S., Orlov, A.N., Timofeev, A.N., Timofeev, V.I., Chernenkov, Yu F., (1971)Glubinnoe Stroenie i Perspectivy Neftegazonosnosti Severo-Zapadnoi Chasti Beringova Morya. Deep structure and oil and gas prospects, southwestern Bering Sea. Geofizicheskie Methodi Razvedvi v Arktike Ministry Geol. SSSR, Nauchno-Issled. Inst. Geol. Arktiki (NIIGA) 7074.Google Scholar
Walcott, R.I., (1972)Past sea levels, eustacy and deformation of the earth. Quaternary Research 2, 114.Google Scholar