Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T06:40:05.514Z Has data issue: false hasContentIssue false

Sand calcites as a key to Pleistocene periglacial landscapes

Published online by Cambridge University Press:  28 December 2020

Médard Thiry*
Affiliation:
MINES ParisTech, PSL Research University, Center of Geosciences, 77305Fontainebleau, France
Christophe Innocent
Affiliation:
BRGM, Direction des Laboratoires, 45060Orléans Cedex 2, France
Jean-Pierre Girard
Affiliation:
TOTAL Exploration et Production, CSTJF, 64018Pau Cedex, France
Anthony Richard Milnes
Affiliation:
Department of Earth Sciences, University of Adelaide, Adelaide, South Australia 5005
Christine Franke
Affiliation:
MINES ParisTech, PSL Research University, Center of Geosciences, 77305Fontainebleau, France
Sophie Guillon
Affiliation:
MINES ParisTech, PSL Research University, Center of Geosciences, 77305Fontainebleau, France
*
*Corresponding author at e-mail address: [email protected] (M. Thiry).

Abstract

We tested the potential for sand calcites to serve as a novel paleoclimate archive by investigating their age and formation conditions. Fontainebleau sand calcites are Pleistocene in age (based on 14C and U-Th dating) and were primarily formed during glacial periods. δ13C values increase with the depth at which these sand calcites formed, consistent with open and closed CO2 systems. Interpretation of the δ18O-T relationship in sand calcites points primarily to their formation at a low temperature, around 2°C in shallow ground water and at about 9°C in deeper ground-water settings. Their occurrence, characteristics, and compositions suggest crystallization from paleo-ground waters in permafrost environments. Crystallization of sand calcites was triggered by degassing of cold carbonate-containing surface waters as they infiltrated warmer subsurface ground-water environments. We consider sand calcites to be important indicators of interactions between meteoric water and ground water in Pleistocene periglacial landscapes. Their disposition may point to specific features of periglacial landscapes, and their ages could permit an assessment of landscape incision rates. Large crystals and zoned spheroliths may, in fact, encapsulate continuous high-resolution records of continental glacial and periglacial paleoenvironments.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amit, R., Enzel, Y., Grodek, T., Crouvi, O., Porat, N., Ayalon, A., 2010. The role of rare rainstorms in the formation of calcic soil horizons on alluvial surfaces in extreme deserts. Quaternary Research 74, 177187.CrossRefGoogle Scholar
Andersen, D.T., Pollard, W.H., McKay, C.P., Heldmann, J., 2002. Cold springs in permafrost on Earth and Mars. Journal of Geophysical Research 107(E3), 4-14-7.CrossRefGoogle Scholar
Bariteau, A., Thiry, M., 2001. Analyse et simulation des transferts géochimiques au sein d'un aquifère: la nappe de Beauce et l'altération des Sables de Fontainebleau. Bulletin Société géologique de France 172, 367381.CrossRefGoogle Scholar
Beck, R., Andreassen, J.P., 2010. Spherulitic growth of calcium carbonate. Crystal Growth & Design 10, 29342947.CrossRefGoogle Scholar
Bertran, P., Andrieux, E., Antoine, P., Coutard, S., Deschodt, L., Gardère, P., Hernandez, M., et al. 2014. Distribution and chronology of Pleistocene permafrost features in France: database and first results. Boreas 43, 699711.CrossRefGoogle Scholar
Bethke, C.M., 2002. The Geochemist's Workbench Release 4.0: A User's Guide to Rxn, Act2, Tact, React, and Gtplot. University of Illinois, Urbana.Google Scholar
Blard, P.-H., Sylvestere, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., et al. , 2011. Lake highstands on the Altiplano (tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates. Quaternary Science Reviews 30, 39733989.CrossRefGoogle Scholar
Boike, J, Roth, K, Overduin, PP., 1998. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resources Research 34, 355363.CrossRefGoogle Scholar
Brasier, A.T., 2011. Searching for travertines, calcretes and speleothems in deep time: processes, appearances, predictions and the impact of plants. Earth-Science Reviews 104, 213239.CrossRefGoogle Scholar
Cavelier, C., Mégnien, C., Pomerol, C., Rat, P., 1980. Le bassin de Paris. In: Introduction à la géologie du Bassin de Paris. 26ème Congrès Géologique International, Paris 7–17 juillet 1980, BRGM, Orléans, pp. 3–52.Google Scholar
Chafetz, H., Rush, P.F., Utech, N.M., 1991. Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38, 107126.CrossRefGoogle Scholar
Cholley, A., 1960. Remarques sur la structure et l’évolution morphologique du Bassin de Paris. Bulletin de l'Association de Géographes Français 288–289, 226.CrossRefGoogle Scholar
Clark, I.D., Lauriol, B., Harwood, L., Marschner, M., 2001. Groundwater contributions to discharge in a permafrost setting, Big Fish River, N.W.T., Canada. Arctic, Antarctic and Alpine Research 33, 6269.CrossRefGoogle Scholar
Cojan, I., Brulhet, J., Corbonnois, J., Devos, A., Gargani, J., Harmand, D., Jaillet, D., et al. , 2007. Morphologic evolution of eastern Paris Basin: “ancient surfaces” and Quaternary incisions. Mémoire Société géologique de France 178, 135155.Google Scholar
Collins, Y., Street-Perrott, F. A., Metcalfe, S. E., Brenner, M., Moreland, M., Freeman, K. H., 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.Google Scholar
Couchoud, I., 2006. Etude pétrographique et isotopique de spéléothèmes du sud-ouest de la France formés en contexte archéologique. Contribution à la connaissance des paléoclimats régionaux du stade isotopique 5. PhD thesis, Université Bordeaux I, Bourdeaux, France.Google Scholar
Couchoud, I., 2008. Les isotopes stables de l'oxygène et du carbone dans les spéléothèmes : des archives paléoenvironnementales. Quaternaire 19, 275291.CrossRefGoogle Scholar
Cuvier, G., Brongniart, A., 1811. Essai sur la géographie minéralogique des environs de Paris, avec une carte géognostique, et des coupes de terrain. Baudouin, Imprimeur de l'Institut Impérial de France, Paris.Google Scholar
Dechen, H. von, 1856. Erscheinungen ähnlich dem krystallisirten Sandsteine von Fontainebleau. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 344345.Google Scholar
Delesse, A.E.O.J., 1853. Sur la proportion de sable mélangé à la chaux carbonatée de Fontainebleau. Bulletin Société géologique de France 11, 5557.Google Scholar
Delkeskamp, R., 1903. Über die Kristallisationsfähigkeit von Kalkspat, Schwerspat und Gips bei ungewöhnlich großer Menge eingeschlossenen Quarzsandes. Zeitschrift für Naturwissenschaften 75, 185208.Google Scholar
Dereviagin, A.Y., Chizhov, A.B., Meyer, H., Hubberten, H.W., Siegert, C., 2003. Recent ground ice and its formation on evidence of isotopic analysis. In: Phillips, M., Springman, S.M., Arenson, L.U. (Eds.), Permafrost. Proceedings of 8th International Conference on Permafrost. Swets & Seitlinger, Lisse, Netherlands, pp. 193198.Google Scholar
Dobinski, W., 2012. Permafrost: the contemporary meaning of the term and its consequences. Bulletin of Geography Physical Geography Series 5, 2942.CrossRefGoogle Scholar
Drees, L.R., Wilding, L.P., 1987, Micromorphic record and interpretations of carbonate forms in the Rolling Plains of Texas. Geoderma 40, 157175.CrossRefGoogle Scholar
Dreybrodt, W., 1982. A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide. Earth and Planetary Science Letters 58, 293299.CrossRefGoogle Scholar
French, H.M., 2013. The Periglacial Environment. Wiley, Hoboken, NJ.Google Scholar
Friedman, I., O'Neil, J.R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. U.S. Geological Survey Professional Paper 440-KK. U.S. Government Printing Office, Washington, DC.CrossRefGoogle Scholar
Fuhrmann, F., Diensberg, B., Gong, X., Lohmann, G., Sirocko, F., 2019. Global aridity synthesis for the last 60 000 years. Climate of the Past, Discussions. https://doi.org/10.5194/cp-2019-108.CrossRefGoogle Scholar
Gell, C.E., 1996. Geometry of Calcite Cemented Concretions of the Arikaree Group (Tertiary): A Clue to Hydrodynamic Processes of Cementation. MA thesis, University of Texas at Austin, Austin.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., van Exter, S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.CrossRefGoogle ScholarPubMed
Ge, S., McKenzie, J., Voss, C., Wu, Q., 2011. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophysical Research Letters 38(14).CrossRefGoogle Scholar
Gonzalez, L.A., Carpenter, S.J., Lohmann, K.C., 1992. Inorganic calcite morphology: roles of fluid chemistry and fluid flow. Journal of Sedimentary Research 62, 382399.Google Scholar
Goslar, T., Czernik, J., Goslar, E., 2004. Low-energy 14C AMS in Poznań radiocarbon laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223, 511.CrossRefGoogle Scholar
Griffiths, H. I., Pedley, H. M., 1995. Did changes in late Last Glacial and early Holocene atmospheric CO2 concentrations control rates of tufa precipitation? The Holocene 5, 238242.CrossRefGoogle Scholar
Guillon, S., Rivière, A., Flipo, N., 2017. Premiers retours sur la faisabilité du traçage des écoulements à l'aide des isotopes stables de l'eau et du radon. PIREN-Seine phase VII— rapport 2017–Isotopes stables de l'eau et radon et traçage des écoulements. Accessed June 16, 2020, https://www.piren-seine.fr/fr/rapports-annuels-2017.Google Scholar
Hansen, M., Dreybrodt, W., Scholz, D., 2013. Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO2 during speleothem growth. Geochimica et Cosmochimica Acta 107, 242251.CrossRefGoogle Scholar
Harrison, W.B. III, 1969. Epigenetic Growth of Calcite-Cemented Nodules within a Porous Dolomite Matrix-Avon Park Formation of Central Florida. Master's thesis, University of South Florida, Tampa.Google Scholar
Hendy, C.H., 1971. The isotopic geochemistry of speleothems 1. The calculation of the effects of the different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E., Brenner, M., Moreland, M., Freeman, K. H., 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293, 16471651.CrossRefGoogle ScholarPubMed
Hudson, A., Quade, J., Huth, T., Lei, G., Cheng, H., Edwards, L., Olsen, J.W., Zhang, H., 2015. Lake level reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau. Quaternary Research 83, 6679.CrossRefGoogle Scholar
Huth, T.E., Cerling, T.E., Marchetti, D.W., Bowling, D.R., Ellwein, A.L., Passey, B.H., 2019. Seasonal bias in soil carbonate formation and its implications for interpreting high-resolution paleoarchives: evidence from southern Utah. Journal of Geophysical Research: Biogeosciences 124, 616632.Google Scholar
Innocent, C., Fléhoc, C., Lemeille, F., 2005. U-Th vs. AMS 14C dating of shells from the Achenheim loess (Rhine Graben). Bulletin de la Société Géologique de France 176, 249255.CrossRefGoogle Scholar
Johnson, M.R., 1989. Paleogeographic significance of oriented calcareous concretions in the Triassic Katberg Formation, South Africa. Journal of Sedimentary Petrology 59, 10081010.CrossRefGoogle Scholar
Kane, D.L., Yoshikawa, K., McNamara, J.P., 2013. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeology Journal 21, 4152.CrossRefGoogle Scholar
Katz, M.E., Miller, K.G., Wright, J.D., Wade, B.S., Browning, J.V., Cramer, B.S., Rosenthal, Y., 2008. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience 1, 329.CrossRefGoogle Scholar
Kelson, J. R., Huntington, K. W., Breecker, D. O., Burgener, L. K., Gallagher, T. M., Hoke, G. D., Petersen, S. V., 2020. A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews 234, 106259.CrossRefGoogle Scholar
Kim, S.T., O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.CrossRefGoogle Scholar
Kokelj, S.V., Jorgenson, M.T., 2013. Permafrost and periglacial processes. Advances in Thermokarst Research 24, 108119.Google Scholar
Lacelle, D., Lauriol, B., Clark, I.D., 2006. Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: implications in paleoclimatic studies. Chemical Geology 234, 116.CrossRefGoogle Scholar
Lachniet, M.S., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.CrossRefGoogle Scholar
Lacroix, A., 1901. Minéralogie de la France et de ses colonies: description physique et chimique des minéraux. Etude des conditions géologiques de leurs gisements. Tome III. Béranger, Paris.Google Scholar
Lassone, J.M.F. de, 1775. Nouvelles observations sur les grès cristallisés, faisant suite au mémoire sur les grès, en général & particulièrement sur ceux de Fontainebleau. Mémoires de l'Académie royale des sciences, 6874.Google Scholar
Lassone, J.M.F. de, 1777. Troisième mémoire sur les grès de Fontainebleau ou analyse de ces pierres et principalement des grès cristallisés. Mémoires de l'Académie royale des sciences, 4351.Google Scholar
Lemieux, J.-M., Sudicky, E.A., Peltier, W.R., Tarasov, L., 2008. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. Journal of Geophysical Research 113, F01011.CrossRefGoogle Scholar
Liu, M. Z., Osborne, C. P., 2008. Leaf cold acclimation and freezing injury in C3 and C4 grasses of the Mongolian Plateau. Journal of Experimental Botany 59, 41614170.CrossRefGoogle ScholarPubMed
Löffler, I., 1999. Vorkommen von Sandcalciten in Frankreich. Accessed June 16, 2020, https://www.mineralienatlas.de/lexikon/index.php/Mineralienportrait/Sandcalcit/Sandcalcite%20in%20Frankreich.Google Scholar
Löffler, I., 2011. Sandcalcite aus Dolinen des Massenkalkes der Langen Riecke bei Brilon. Lapis 36, 7274.Google Scholar
Löffler, I., 2012. Sandcalcite und auf calcit basierende Koncretionen. Accessed June 16, 2020, https://www.mineralienatlas.de/lexikon/index.php/Mineralienportrait/Sandcalcit.Google Scholar
Lohmann, K.C., 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James, N.P., Choquette, P.W (Eds.), Paleokarst. Springer, New York, pp. 5880.CrossRefGoogle Scholar
Lottner, F.H., 1863. Krystallisierter Sandstein von Brilon. Zeitschrift der Deutschen Geologischen Gesellschaft 15, 242.Google Scholar
McBride, E.F., Parea, G.C., 2001. Origin of highly elongate, calcite-cemented concretions in some Italian coastal beach and dune sands. Journal of Sedimentary Research 71, 8287.CrossRefGoogle Scholar
McBride, E.F., Picard, M.D., Folk, R.L., 1994. Oriented concretions, Ionian Coast, Italy: evidence of groundwater flow direction. Journal of Sedimentary Research A64, 535540.Google Scholar
McCullough, L., 2003. Habit, Formation, and Implication of Elongate, Calcite Concretions, Victoria, Australia. Senior honors thesis, Wittenberg University, Springfield, OH.Google Scholar
McEwen, T., Marsily, G. D., 1991. The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository. Report No. SKI-TR—91-8. Swedish Nuclear Power Inspectorate. Stockholm, Sweden, November 6, 2020, https://inis.iaea.org/collection/NCLCollectionStore/_Public/24/007/24007818.pdf.Google Scholar
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., Ito, E., 2004. Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta 68, 43814393.CrossRefGoogle Scholar
Mickler, P.J., Stern, L.A., Banner, J.L., 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118, 6581.CrossRefGoogle Scholar
Millot, R., Guerrot, C., Innocent, C., Négrel, P., Sanjuan, B., 2011. Chemical, multi-isotopic (Li–B–Sr–U–H–O) and thermal characterization of Triassic formation waters from the Paris Basin. Chemical Geology 283, 226241.CrossRefGoogle Scholar
Mindat, , 2016. Sand Calcite. Accessed June 16, 2020, http://www.mindat.org/min-30445.html.Google Scholar
Morale, J.A., Liu, Z., 2009. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies 71, 7380.Google Scholar
Mozley, P.S., Davis, J.M., 2005. Internal structure and mode of growth of elongate calcite concretions: evidence for small-scale, microbially induced, chemical heterogeneity in groundwater. Geological Society of America Bulletin 117, 14001412.CrossRefGoogle Scholar
Mozley, P.S., Goodwin, L.P., 1995. Patterns of cementation along a Cenozoic normal fault: a record of paleoflow orientations. Geology 23, 539542.2.3.CO;2>CrossRefGoogle Scholar
Oerter, E.J., Sharp, W.D., Oster, J.L., Ebeling, A., Valley, J.W., Kozdon, R., Orlande, I.J, et al. ., 2016. Pedothem carbonates reveal anomalous North American atmospheric circulation 70,000–55,000 years ago. Proceedings of the National Academy of Sciences USA 113, 919924.CrossRefGoogle ScholarPubMed
O'Neil, J. R. (1968). Hydrogen and oxygen isotope fractionation between ice and water. Journal of Physical Chemistry 72, 36833684.CrossRefGoogle Scholar
Oostrom, M., Hayworth, J. S., Dane, J. H., Güven, O., 1992. Behavior of dense aqueous phase leachate plumes in homogeneous porous media. Water Resources Research 28, 21232134.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., et al. , 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Quade, J., Eiler, J., Daeron, M., Achyuthan, H., 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta 105, 92107.CrossRefGoogle Scholar
Quade, J., Roe, L.J., 1999. The stable-isotope composition of early ground-water cements from sandstone in paleoecological reconstruction. Journal of Sedimentary Research 69, 667674.CrossRefGoogle Scholar
Richter, D.K., Felicitas, D., Riechelmann, C., 2008. Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable C-O isotope composition. International Journal of Speleology 37, 119129.CrossRefGoogle Scholar
Richter, D.K., Schulte, U., Mangini, A., Erlemeyer, A., Erlemeyer, M., 2010. Mittel- und Oberpleistozäne Calcitpartikel kryogener Entstehung aus der Apostelhöhle südöstlich Brilon (Sauerland, NRW). Geologie und Palaontologie in Westfalen 78, 6171.Google Scholar
Rogers, A.F., Reed, R.D., 1926. Sand-calcite crystals from Monterey County, California. American Mineralogist 11, 2328.Google Scholar
Sargent, K.A., Zeller, H.D., 1984. Sand-calcite crystals from Garfield County, Utah. U.S. Geological Survey Bulletin 1606.Google Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., 1998. Field Book for Describing and Sampling Soils. Natural Resources Conservation Service, U.S. Department of Agriculture, National Center, Lincoln, NE.Google Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., McManus, J.F., 2002. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quaternary Science Reviews 21, 331342.CrossRefGoogle Scholar
Thiry, M., 2016. Les Calcites de Fontainebleau: occurrence et genèse. Bulletin Association des Naturalistes de la Vallée du Loing 89, 111133.Google Scholar
Thiry, M., Bertrand-Ayrault, M., Grisoni, J.-C., 1988. Ground-water silicification and leaching in sands: example of Fontainebleau Sand (Oligocène) in the Paris Basin. Geological Society of America Bulletin 100, 12831290.2.3.CO;2>CrossRefGoogle Scholar
Thiry, M., Liron, M.N., Dubreucq, P., Polton, J.-C., 2017. Curiosités géologiques du massif de Fontainebleau, Guide géologique. BRGM Éditions Orléans, France.Google Scholar
Thiry, M., Millot, R., Innocent, C., Franke, C., 2015. The Fontainebleau Sandstone: Bleaching, Silicification and Calcite Precipitation under Periglacial Conditions. Field Trip Guide, AIG-11, Applied Isotope Geochemistry Conference, September 21 to 25 2015, Orléans, France. Scientific Report N° RS150901MTHI. Centre de Géosciences, Ecole des Mines de Paris, Paris Accessed November 6, 2020, https://hal-mines-paristech.archives-ouvertes.fr/hal-01236712/document.Google Scholar
Thiry, M., van Oort, F., Thiesson, J., van Vliet-Lanoë, B., 2013. Periglacial morphogenesis in the Paris Basin: insight from geophysical survey and consequences on the fate of soil pollution. Geomorphology 197, 3444.CrossRefGoogle Scholar
Tian, C., Wang, L., Kaseke, K.F., Bird, B.W., 2018. Stable isotope compositions (δ2H, δ18O and δ17O) of rainfall and snowfall in the central United States. Scientific Reports 8, 6712.CrossRefGoogle ScholarPubMed
Tracy, S.L., François, C.J.P., Jennings, H.M., 1998. The growth of calcite spherulites from solution: I. Experimental design techniques. Journal of Crystal Growth 193, 374381.CrossRefGoogle Scholar
van Vliet-Lanoë, B., Lisitsyna, O., 2001. Permafrost extent at the Last Glacial Maximum and at the Holocene Optimum. The Climex Map. In: Paepe, R., Melnikov, Vladimir P. (Eds.), Permafrost Response on Economic Development, Environmental Security and Natural Resources. Springer Netherlands, Dordrecht, pp. 215225.CrossRefGoogle Scholar
van Werveke, L., 1888. Über Pseudomorphosen von Bundsandstein nach Kalkspath in den Vogesen. Mitteilung der Kommission der Geologischen Landesuntersuchung Elsaß-Lothringen 1, 104107.Google Scholar
Vatan, A., 1967. Manuel de Sédimentologie. Editions Technip, Paris.Google Scholar
Vidstrand, P., 2003. Surface and Subsurface Conditions in Permafrost Areas—A Literature Review. Report No. SKB-TR—03-06. Swedish Nuclear Fuel and Waste Management Company Stockholm, Sweden. Accessed November 6, 2020. https://inis.iaea.org/collection/NCLCollectionStore/_Public/34/047/34047725.pdfGoogle Scholar
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., et al. , 2011. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5. Quaternary Science Reviews 30, 130146.CrossRefGoogle Scholar
Woo, M.K., 2012. Permafrost Hydrology. Springer, Berlin.CrossRefGoogle Scholar
Yoshikawa, K., Hinzman, L., 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglacial Processes 14, 151160.CrossRefGoogle Scholar
Yoshikawa, K., Hinzman, L.D., Kane, D.L., 2007. Spring and aufeis (icing) hydrology in Brooks Range, Alaska. Journal of Geophysical Research: Biosciences 112(G04S43), 114.CrossRefGoogle Scholar
Žák, K., Onac, B.P., Perşoiu, A., 2008. Cryogenic carbonates in cave environments: a review. Quaternary International 87, 8496.CrossRefGoogle Scholar
Žák, K., Richter, D.K., Filippi, M., Zivor, R., Deininger, M., Mangini, A., Scholz, D., 2012. Cryogenic cave carbonate—a new tool for estimation of the Last Glacial permafrost depth of the Central Europe. Climate of the Past Discussions 8, 21452185.Google Scholar
Žák, K., Urban, J., Cilek, V., Hercman, H., 2004. Cryogenic cave calcite from several Central European caves; age, carbon and oxygen isotopes and a genetic model. Chemical Geology 206, 119136.CrossRefGoogle Scholar
Zhang, Y., Chen, W., Riseborough, D.W., 2008. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100. Geophysical Research Letters 35, L02502.Google Scholar
Supplementary material: File

Thiry et al. supplementary material

Thiry et al. supplementary material

Download Thiry et al. supplementary material(File)
File 7.6 MB