Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T05:21:03.389Z Has data issue: false hasContentIssue false

Relative sea level and wave energy changes recorded in a micro-tidal barrier in southern Brazil

Published online by Cambridge University Press:  23 June 2022

Natália B. Santos*
Affiliation:
Departamento de Geofísica, Observatório Nacional. 77 General José Cristino Street, Rio de Janeiro, RJ, 20921-400 Brazil
Ernesto L.C. Lavina
Affiliation:
Programa de Pós Graduação em Geologia, Universidade do Vale do Rio dos Sinos–UNISINOS. 950 Unisinos Avenue, São Leopoldo, RS, 93022-750 Brazil
Paulo S.G. Paim
Affiliation:
Programa de Pós Graduação em Geologia, Universidade do Vale do Rio dos Sinos–UNISINOS. 950 Unisinos Avenue, São Leopoldo, RS, 93022-750 Brazil
Sonia H. Tatumi
Affiliation:
Instituto de Ciências Marinhas, Universidade Federal de São Paulo–USP, Campus Baixada Santista, 136 Silva Jardim Street, Santos, SP, 11015-020 Brazil
Márcio Yee
Affiliation:
Instituto de Ciências Marinhas, Universidade Federal de São Paulo–USP, Campus Baixada Santista, 136 Silva Jardim Street, Santos, SP, 11015-020 Brazil
Veridiana O. dos Santos
Affiliation:
Instituto Oceanográfico, Universidade Federal do Rio Grande–FURG. Itália Avenue, 8 km–Carreiros Campus Rio Grande, RS, 96203-900 Brazil
Henrique P. Kern
Affiliation:
Programa de Pós Graduação em Geologia, Universidade do Vale do Rio dos Sinos–UNISINOS. 950 Unisinos Avenue, São Leopoldo, RS, 93022-750 Brazil
*
*Corresponding author email address: [email protected]

Abstract

Constructional sedimentary history of coastal barriers can provide insights regarding meteorological and oceanographic processes, and relative sea-level changes. We investigated the Holocene evolution of a segment of the Rio Grande do Sul Coastal Plain in southernmost Brazil. Data were obtained from ground-penetrating radargrams, optically stimulated luminescence dating, altimetry measurements, Google Earth imagery, and aerial photographs. These data allowed a qualitative and quantitative analysis of the beach profiles recorded in the radargrams. From which eolian, backshore/foreshore, breaker bars, and upper and lower shoreface radar facies were identified. The beach-related radar facies are recorded in twenty-eight progradational sand units (sigmoidal bodies). These units record increments of relatively steady deposition bounded by erosional surfaces produced by anomalous, high-magnitude storm events taking place about every 250 years. The upper shoreface strata include two to three breaker bars. Several pieces of evidence (number of breaker bars, upper shoreface gradient and progradation rate) suggest an alternation between dissipative and intermediate stages of barrier morphodynamics and a decrease of wave energy from 2 ka onwards. The barrier prograded during the last 7.1 ka, and initially, barrier progradation occurred because of a normal regression during a relative sea-level rise followed by a stillstand. Later, barrier progradation took place as a forced regression driven by a relative sea-level fall.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aagaard, T., 1991. Multiple-bar morphodynamics and its relation to low-frequency edge waves. Journal of Coastal Research 7, 801813.Google Scholar
Angulo, R.J., de Souza, M.C., 2014. Revisão conceitual de indicadores costeiros de paleoníveis marinhos quaternários no Brasil. Quaternary and Environmental Geosciences 5, 132. [in Portuguese with English abstract]CrossRefGoogle Scholar
Angulo, R.J., Lessa, G.C., de Souza, M.C., 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Review 25, 486506.CrossRefGoogle Scholar
Asmus, H.E., Porto, R., 1972. Classificação das bacias sedimentares brasileiras segundo a tectônica de placas. Anais do XXVI Congresso Brasileiro de Geologia 2, Sociedade Brasileira de Geologia, Belém, pp. 6790.Google Scholar
Barboza, E.G., Dillenburg, S.R., Ritter, M.N., Angulo, R.J., da Silva, A.B., da Camera Rosa, M.L.C., Caron, F., de Souza, M.C., 2021. Holocene sea-level changes in Southern Brazil based on high-resolution radar stratigraphy. Geosciences 11, 326. https://doi.org/10.3390/geosciences11080326.CrossRefGoogle Scholar
Barlow, N.L.M., Shennan, I., Long, A.J., Gehrels, W.R., Saher, M.H., Woodroffe, S.A., Hillier, C., 2013. Salt marshes as late Holocene tide gauges. Global and Planetary Change 106, 90110.CrossRefGoogle Scholar
Billy, J., Robin, N., Hein, C.J., Certain, R., FitzGerald, D.M., 2015. Insight into the late Holocene sea-level changes in the NW Atlantic from a paraglacial beach-ridge plain south of Newfoundland. Geomorphology 248, 134146.CrossRefGoogle Scholar
Bristow, C.S., Pucillo, K., 2006. Quantifying rates of coastal progradation from sediment volume using GPR and OSL: the Holocene fill from a paraglacial beach-ridge plain south of Guichen Bay, south-east South Australia. Sedimentology 53, 769788.CrossRefGoogle Scholar
Calliari, L.J., Klein, A.H.F., Barros, F.C.R., 1996. Beach differentiation along the Rio Grande do Sul coastline (Southern Brazil). Revista Chilena de História Natural 69, 485493.Google Scholar
Calliari, L.J., Muehe, D., Hoefel, F.G., Toldo, E. Jr., 2003. Morfodinâmica praial: uma breve revisão. Brazilian Journal of Oceanography 51, 6378.CrossRefGoogle Scholar
Carassai, J.J., Lavina, E.L.C., Chemale, F. Jr., Girelli, T.J., 2018. Provenance of heavy minerals for the Quaternary coastal plain of southernmost Brazil (Rio Grande do Sul State). Journal of Coastal Research 35, 295304.CrossRefGoogle Scholar
Clemmensen, L.B., Glad, A.C., Kroon, A., 2016. Storm flood impacts along the shores of micro-tidal inland seas: A morphological and sedimentological study of the Vesterlyng beach, the Belt Sea, Denmark. Geomorphology 253, 251261.CrossRefGoogle Scholar
Cooper, J.A.G., Green, A.N., Loureiro, L., 2018. Geological constraints on mesoscale coastal barrier behaviour. Global and Planetary Change 168, 1534.CrossRefGoogle Scholar
Costas, S., Ferreira, O., Plomaritis, T.A., Leorri, E., 2016. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction. Scientific Reports 6, 38726. https://doi.org/10.1038/srep38726.CrossRefGoogle ScholarPubMed
Dillenburg, S.R., Barboza, E.G., 2014. The strike-fed sandy coast of Southern Brazil. The Geological Society of London Special Publications 388, 333352.CrossRefGoogle Scholar
Dillenburg, S.R., Roy, P.S., Cowell, P.J., Tomazelli, L.J., 2000. Influence of antecedent topography on coastal evolution as tested by the shoreface translation-barrier model (STM). Journal of Coastal Research 16, 7181.Google Scholar
Dillenburg, S.R., Tomazelli, L.J., Barboza, E.G., 2004. Barrier evolution and placer formation at Bujuru southern Brazil. Marine Geology 203, 4356.CrossRefGoogle Scholar
Dillenburg, S.R., Tomazelli, L.J., Hesp, P.A., Barboza, E.G., Clero, L.C.P., da Silva, D.B., 2006. Stratigraphy and evolution of a prograded transgressive dunefield barrier in southern Brazil. Journal of Coastal Research 39, 132135.Google Scholar
Dillenburg, S.R., Barboza, E.G., Tomazelli, L.J., Hesp, P.A., Clerot, L.C.P., Ayup-Zouain, R.N., 2009. The Holocene coastal barriers of Rio Grande do Sul. In: Dillenburg, S.R., Hesp, P.A. (Eds.), Geology and Geomorphology of Holocene Coastal Barrier of Brazil. Lecture Notes in Earth Science 107, Springer, Berlin, pp. 5391.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Rosa, M.L.C.C., Caron, F., Sawakuchi, A.O., 2017. The complex prograded Cassino barrier in southern Brazil: Geological and morphological evolution and records of climatic, oceanographic and sea-level changes in the last 7–6 ka. Marine Geology 390, 106119.CrossRefGoogle Scholar
Dougherty, A.J., FitzGerald, D.M., Buynevich, I.V., 2004. Evidence for storm-dominated early progradation of Castle Neck barrier, Massachusetts, USA. Marine Geology 210, 123134.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–34.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 127.CrossRefGoogle Scholar
Gallagher, E.L., Elgar, S., Guza, R.T., 1998. Observations of sand bar evolution on a natural beach. Journal of Geophysical Research 103, 32033215.CrossRefGoogle Scholar
Gontz, A.M., Moss, P.T., Wagenknecht, E.K., 2014. Stratigraphic architecture of a regressive strand plain, Flinders Beach, North Stradbroke Island, Queensland, Australia. Journal of Coastal Research 30, 575585.Google Scholar
Goslin, J., Clemmensen, L.B., 2017. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers. Quaternary Science Reviews 174, 80119.CrossRefGoogle Scholar
Gruber, N.L.S., Toldo, E.E. Jr., Barboza, E.G., Nicolodi, J.L., 2003. Equilibrium beach and shoreface profile of the Rio Grande do Sul coast–south of Brazil. Journal of Coastal Research 35, 253259.Google Scholar
Gruber, N.L.S., Corrêa, I.C.S., Nicolodi, J.L., Barboza, E.G., 2006a. Morphodynamic limits of shoreface and inner shelf at the northern coast of Rio Grande do Sul, Brazil. Journal of Coastal Research 39, 664668.Google Scholar
Gruber, N.L.S., Toldo, E.E. Jr., Barboza, E.G., Nicolodi, J.L., Ayup-Zouain, R.N., 2006b. A shoreface morphodynamic zonation and the equilibrium profile variability on the northern coastline of Rio Grande do Sul, Brazil. Journal of Coastal Research 39, 504508.Google Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29, 58.Google Scholar
Guimarães, P.V., Farina, L., Toldo, E. Jr., Diaz-Hernandez, G., Akhmatskaya, E., 2015. Numerical simulation of extreme wave runup during storm events in Tramandaí Beach, Rio Grande do Sul, Brazil. Coastal Engineering 95, 171180.CrossRefGoogle Scholar
Hede, M.U., Bendixen, M., Clemmensen, L.B., Kroon, A., Nielson, L., 2013. Joint interpretation of beach-ridge architecture and coastal topography show the validity of sea-level markers observed in ground-penetrating radar data. The Holocene 23, 12381246.CrossRefGoogle Scholar
Hede, M.U., Sander, L., Clemmensen, A.K., Pejrup, M., Nielsen, L., 2015. Changes in Holocene relative sea-level and coastal morphology: A study of a raised beach ridge system on Samso, southwest Scandinavia. The Holocene 25, 14021414.CrossRefGoogle Scholar
Hesp, P.A., Dillenburg, S.R., Barboza, E.G., Clerot, C.P., Tomazelli, L.J., Ayup-Zouain, R.N., 2007. Morphology of the Itapeva to Tramandaí transgressive dunefield barrier system and mid- to late Holocene sea level change. Earth Surface Processes and Landforms 32, 407414.CrossRefGoogle Scholar
Hesp, P.A., Dillenburg, S.R., Barboza, E.G., Tomazelli, L.J., Ayup-Zouain, R.N., Esteves, L.S., Gruber, N.L.S., Toldo, E.E. Jr., Tabajara, L.L.C.d.A., Clerot, L.C.P., 2005. Beach ridges, foredunes or transgressive dunefields? Definitions and an examination of the Torres to Tramandaí barrier system, southern Brazil. Anais da Academia Brasileira de Ciências 77, 493508.CrossRefGoogle Scholar
Hunt, D., Tucker, M.E., 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentary Geology 81, 19.CrossRefGoogle Scholar
Johnson, J.M., Moore, L.J., Ells, K., Murray, A.B., Adams, P.N., MacKenzie, R.A., III, Jaeger, J.M., 2014. Recent shifts in coastline change and shoreline stabilization linked to storm climate change. Earth Surface Processes and Landforms 40, 569585.CrossRefGoogle Scholar
Johnston, J.W., Thompson, T.A., Baedke, S.J., 2007. Systematic pattern of beach-ridge development and preservation: Conceptual model and evidence from ground penetrating radar. In: Baker, G.S., Jol, H.M. (Eds.), Stratigraphic Analyses Using GPR. Geological Society of America Special Paper 432, Geological Society of America, Boulder, Colorado, pp. 4758.CrossRefGoogle Scholar
Lima, L.G., 2012. Estratigrafia e Evolução Holocênica de Uma Barreira Costeira Trangressiva-Regressiva, Litoral Norte do Rio Grande do Sul. PhD dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.Google Scholar
Lima, L.G., Dillenburg, S.R., Medeanic, S., Barboza, E.G., Rosa, M.L.C.C., Tomazelli, L.J., Dehnhardt, B.A., Caron, F., 2013. Sea-level rise and sediment budget controlling the evolution of a transgressive barrier in southern Brazil. Journal of South American Earth Sciences 42, 2738.CrossRefGoogle Scholar
Lippmann, T.C., Holman, R.A., 1990. The spatial and temporal variability of sand bar morphology. Journal of Geophysical Research 95, 1157511590.CrossRefGoogle Scholar
Lippmann, T.C., Holman, R.A., Hathaway, K.K., 1993. Episodic, nonstationary behavior of a double bar system at Duck, North Carolina, U.S.A., 1986–1991. Journal of Coastal Research 15, 4975.Google Scholar
Machado, A.A., Calliari, L.J., 2016. Synoptic systems generators of extreme wind in southern Brazil: atmospheric conditions and consequences in the coastal zone. Journal of Coastal Research 75, 11821186.CrossRefGoogle Scholar
Machado, A.A., Calliari, L.J., Melo, E., Klein, A.H.F., 2010. Historical assessment of extreme coastal sea state conditions in southern Brazil and their relation to erosion episodes. Pan-American Journal of Aquatic Sciences 5, 277286.Google Scholar
McCubbin, D.G., 1982. Barrier-island and strand-plain facies. In: Scholle, P.A., Spearing, D.R. (Eds.), Sandstone Depositional Environments, AAPG Memoir 31, American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 247280.Google Scholar
McTaggart-Cowan, R., Bosart, L.F., Davis, C.A., Atallah, E.H., Gyakum, J.R., Emanuel, K.A., 2006. Analysis of Hurricane Catarina (2004). Monthly Weather Review 134, 30293053.CrossRefGoogle Scholar
Moore, L.J., Murray, A.B. (Eds.), 2018. Barrier Dynamics and Response to Changing Climate. Springer Nature, Cham, 381 pp.CrossRefGoogle Scholar
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth Science Reviews 66, 261330.CrossRefGoogle Scholar
Neal, A., Roberts, C.L., 2000. Applications of ground-penetrating radar (GPR) to sedimentological, geomorphological and geoarchaeological studies in coastal environments. Geological Society of London Special Publications 175, 139171.CrossRefGoogle Scholar
Nielsen, L., Clemmensen, L.B., 2009. Sea-level markers identified in ground-penetrating radar data collected across a modern beach ridge system in a microtidal regime. Terra Nova 21, 474479.CrossRefGoogle Scholar
Oliver, T.S.N., Thom, B.G., Woodroffe, C.D., 2016. Formation of beach-ridge plains: an appreciation of the contribution by Jack L. Davies. Geographical Research 55, 305320.CrossRefGoogle Scholar
Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83108.CrossRefGoogle Scholar
Parise, C.K., Calliari, L.J., Krusche, N., 2009. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion. Brazilian Journal of Oceanography 57, 175188.CrossRefGoogle Scholar
Payton, C.E. (Ed.), 1977. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir 26. American Association of Petroleum Geologists, Tulsa, Oklahoma, 516 pp.CrossRefGoogle Scholar
Plint, A.G., 2010. Wave- and storm- dominated shoreline and shallow-marine systems. In: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geotext 6, Geological Association of Canada, St. John's, New Brunswick, pp. 167199.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Reading, H.G., Collinson, J.D., 1996. Clastic coasts. In: Reading, H.G. (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy. 3 rd Edition, Blackwell Scientific, Oxford, pp. 155231.Google Scholar
Rodriguez, A.B., Meyer, C.T., 2006. Sea-level variation during the Holocene deduced from the morphologic and stratigraphic evolution of Morgan Peninsula, Alabama, U.S.A. Journal of Sedimentary Research 76, 257269.CrossRefGoogle Scholar
Rosa, M.L.d.C., Barboza, E.G., Abreu, V.S., Tomazelli, L.J., Dillenburg, S.R., 2017. High-frequency sequences in the Quaternary of Pelotas Basin (coastal plain): a record of degradational stacking as a function of longer-term base-level fall. Brazilian Journal of Geology 47, 183207.CrossRefGoogle Scholar
Short, A.D., Aagaard, T., 1993. Single and multi-bar beach change models. Journal of Coastal Research 15, 141157.Google Scholar
Short, A.D., Hesp, P.A., 1982. Wave, beach and dune interactions in southeastern Australia. Marine Geology 48, 259284.CrossRefGoogle Scholar
Sunamura, T., Horikawa, K., 1974. Two-dimensional beach transformation due to waves. Coastal Engineering Proceedings 1, 920938.CrossRefGoogle Scholar
Tabajara, L.L.C.A., Almeida, L.E.S.B., Martins, L.R.S., 2008. Morfodinâmica bi-tridimensional de praia e zona de surfe intermediária-dissipativa no litoral norte-RS. Gravel 6, 8197.Google Scholar
Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews 114, 279297.CrossRefGoogle Scholar
Tamura, T., Murakami, F., Nanayama, F., Watanabe, K., Saito, Y., 2008. Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Marine Geology 248, 1127.CrossRefGoogle Scholar
Tanner, W.F., 1995. Origin of beach ridges and swales. Marine Geology 129, 149161.CrossRefGoogle Scholar
Taylor, M., Stone, G.W., 1996. Beach-ridges: a review. Journal of Coastal Research 12, 612621.Google Scholar
Tercier, P., Knight, R., Jol, H., 2000. A comparison of the correlation structure in GPR images of deltaic and barrier-spit depositional environments. Geophysics 65, 11421153.CrossRefGoogle Scholar
Tillmann, T., Wunderlich, J., 2013. Barrier rollover and spit accretion due to the combined action of storm surge induced washover events and progradation: Insights from ground-penetrating radar surveys and sedimentological data. Journal of Coastal Research 65, 600605.CrossRefGoogle Scholar
Toldo, E.E. Jr., Almeida, L.E.S., Dillenburg, S.R., Tabajara, L.L., Ferreira, E.R., Borghetti, C., 1993. Parâmetros morfodinâmicos e deriva litorânea da praia de Tramandaí-RS. Geosul 15, 7588.Google Scholar
Tomazelli, L., 1993. O regime dos ventos e a taxa de migração das dunas eólicas costeiras do Rio Grande do Sul, Brasil. Pesquisas em Geociências 20, 1826.CrossRefGoogle Scholar
Tomazelli, L.J., Villwock, J.A., 1992. Considerações sobre o ambiente praial e a deriva litorânea de sedimentos ao longo do litoral norte do Rio Grande do Sul, Brasil. Pesquisas em Geociências 19, 312.CrossRefGoogle Scholar
Tomazelli, L.J., Villwock, J.A., 2000. O Cenozóico no Rio Grande do Sul: geologia da planície costeira. In: Holz, M., De Ros, L.F. (Eds.) Geologia do Rio Grande do Sul. Edição CIGO/UFRGS, Porto Alegre, Brazil, pp. 375406.Google Scholar
van Heteren, S., Huntley, D.J., van de Plassche, O., Lubberts, R.K., 2000. Optical dating of dune sand for the study of sea-level change. Geology 28, 411414.2.0.CO;2>CrossRefGoogle Scholar
Villwock, J.A., 1984. Geology of the coastal province of Rio Grande do Sul, southern Brazil. A synthesis. Pesquisas em Geociências 16, 549.CrossRefGoogle Scholar
Wright, L.D., Short, A.D., 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56, 93118.CrossRefGoogle Scholar
Wright, L.D., Short, A.D., Green, M.O., 1985. Short-term changes in the morphodynamic states of beaches and surf zones: an empirical predictive model. Marine Geology 62, 339364.CrossRefGoogle Scholar