Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-16T09:22:48.278Z Has data issue: false hasContentIssue false

A reassessment of the age of the fauna from Cumberland Bone Cave, Maryland, (middle Pleistocene) using coupled U-series and electron spin resonance dating (ESR)

Published online by Cambridge University Press:  16 June 2020

Charles B. Withnell*
Affiliation:
Department of Biology and Environmental Health, Missouri Southern State University, Joplin, MO, USA Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, USA
Renaud Joannes-Boyau
Affiliation:
Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross Geoscience, Southern Cross University, East Lismore, 2480, NSW, AUS
Christopher J. Bell
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, USA
*
*Corresponding author at: 3950 Newman Road, Department of Biology and Environmental Health, Missouri Southern State University, Joplin, MO, 64801, USA. E-mail: [email protected] (Charles B. Withnell).

Abstract

The deposits in Cumberland Bone Cave (Allegany County, Maryland) preserved one of the most taxonomically diverse pre-radiocarbon Pleistocene faunas in the northeastern United States. The site has long been recognized as an important record of Pleistocene life in the region, but numerical age control for the fauna was never developed, and hypotheses for its age have been based upon biochronological assessments of the mammalian fauna. We used fossil teeth and preserved sediment housed in museum collections to obtain the first numerical age assessment of the fauna from Cumberland Bone Cave. Coupled U-series Electron Spin Resonance (US-ESR) was used to date fossil molars of the extinct peccary, Platygonus sp. The age estimates of two teeth gave ages of 722 ± 64 and 790 ± 53 ka. Our results are supported by previously unpublished paleomagnetic data generated by the late John Guilday, and by plotting length-width of the first molar (m1) of Ondatra (muskrats) from Cumberland Bone Cave on the chronocline of Ondatra molar evolution in North America. Our age assessments are surprisingly close to the age estimate previously proposed by Charles Repenning, who based his age on a somewhat complicated model of speciation and morphotype evolution among arvicoline rodents.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnosky, A.D., 2004. Climate change, biodiversity, and ecosystem health: The past as a key to the future. In: Barnosky, A.D. (Ed.), Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado. University of California Press, Berkeley, California, pp. 35.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y. 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91108.CrossRefGoogle Scholar
Bell, C.J., Jass, C.N., 2011. Polyphyly, paraphyly, provinciality, and the promise of intercontinental correlation: Charles Repenning's contributions to the study of arvicoline rodent evolution and biochronology. Palaeontologia Electronica 14(3): 18A, 115.Google Scholar
Bell, C.J., Lundelius, E.L. Jr., Barnosky, A.D., Graham, R.W., Linsay, E.H., Ruez, D.R. Jr., Semken, H.A. Jr., Webb, S.D., Zakrzewski, R.J., 2004a. The Blancan, Irvingtonian, and Rancholabrean mammal ages. In: Woodburne, M.O. (Ed.), Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. Columbia University Press, New York, pp. 232314.Google Scholar
Bell, C.J., Repenning, C.A., Barnosky, A.D., 2004b. Arvicoline rodents from Porcupine Cave. Identification, spatial distribution, taxonomic assemblages, and biochronologic significance. In: Barnosky, A.D., (Ed.), Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado. University of California Press, Berkeley, CA. pp. 207263.CrossRefGoogle Scholar
Brown, B., 1908. The Conard Fissure, a Pleistocene bone deposit in northern Arkansas. Memoirs, American Museum Natural History 9, 158208.Google Scholar
Cassiliano, M.L., 1999. Biostratigraphy of Blancan and Irvingtonian mammals in the Fish-Creek—Vallecito Creek section, southern California, and a review of the Blancan-Irvingtonian boundary. Journal of Vertebrate Paleontology 19, 169186.CrossRefGoogle Scholar
Cope, E.D., 1871. Preliminary report on the Vertebrata discovered in the Port Kennedy Bone Cave. Proceedings of the American Philosophical Society Held at Philadelphia for Promoting Useful Knowledge 12, 73102.Google Scholar
Daeschler, E.B., Lamanna, M.C., Carfioli, M., 2005. On the trail of an important ice age fossil deposit. Park Science 23(2), 3134.Google Scholar
Daeschler, E.B., Spamer, E.E., Parris, D.C., 1993. Review and new data on the Port Kennedy local fauna and flora (late Irvingtonian), Valley Forge National Historical Park, Montgomery County, Pennsylvania. The Mosasaur 5, 2341.Google Scholar
Downs, T., Miller, G.J., 1994. Late Cenozoic equids from the Anza-Borrego Desert of California. Natural History Museum of Los Angeles County Contributions in Science 440, 190.Google Scholar
Downs, T., White, J.A., 1968. A vertebrate faunal succession in superposed sediments from late Pliocene of middle Pleistocene in California. In: Tejkal, J. (Ed.), International Geological Congress. Report of the Twenty-Third Session, Czechoslovakia 1968: Proceedings of Section 10 Tertiary/Quaternary Boundary. Academia, Prague, Czechoslovakia. pp. 4147.Google Scholar
Duval, M., Grün, R., 2016. Are published ESR dose assessments on fossil tooth enamel reliable? Quaternary Geochronology 31, 1927.CrossRefGoogle Scholar
Fejfar, O., Repenning, C.A., 1992. Holarctic dispersal of the Arvicolids (Rodentia, Cricetidae). In: Koenigswald, W.V., and Werdelin, L. (Eds.), Mammalian Migration and Dispersal Events in the European Quaternary. Courier Forschunginstitut Senckenberg 153. pp. 205–212.Google Scholar
Gidley, J.W., 1913. Preliminary report on a recently discovered Pleistocene cave deposit near Cumberland, Maryland. Proceedings of the United States National Museum 46, 93102.CrossRefGoogle Scholar
Gidley, J.W., Gazin, C.L., 1933. New mammalia in the Pleistocene fauna from Cumberland Cave. Journal of Mammalogy 14(4), 343357.CrossRefGoogle Scholar
Gidley, J.W., Gazin, C.L., 1938. The Pleistocene vertebrate fauna from Cumberland Cave Maryland. United States National Museum Bulletin 171, 199, Plates 1–10.Google Scholar
Grün, R., 1989. Electron spin resonance (ESR) dating. Quaternary International 1, 65109.CrossRefGoogle Scholar
Grün, R., 2009. The relevance of parametric U-uptake models in ESR age calculations. Radiation Measurements 44, 472476.CrossRefGoogle Scholar
Grün, R., 1997. Electron spin resonance dating. In: Taylor, R.E., Aitken, M.J., (Eds.), Chronometric Dating in Archaeology. Plenum Press, New York, pp. 217260.CrossRefGoogle Scholar
Grün, R., Aubert, M., Joannes-Boyau, R., Moncel, M.H., 2008a. High resolution analysis of uranium and thorium concentrations as well as U-series isotope distributions in a Neanderthal tooth from Payre using laser ablation ICP-MS. Geochimica Cosmochimica Acta 72, 52785290.CrossRefGoogle Scholar
Grün, R., Eggins, S., Kinsley, L., Mosely, H., Sambridge, M., 2014. Laser ablation U-series analysis of fossil bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 150167.CrossRefGoogle Scholar
Grün, R., Joannes-Boyau, R., Stringer, C., 2008b. Two types of CO2− radicals threaten the fundamentals of ESR dating of tooth enamel. Quaternary Geochronology 3, 150172.CrossRefGoogle Scholar
Grün, R., Mahat, R., Joannes-Boyau, R., 2012. Ionization efficiencies of alanine dosimeters and tooth enamel irradiated by gamma and X-ray sources. Radiation Measurements 47, 665668.CrossRefGoogle Scholar
Grün, R., Schwarcz, H.P., Chadam, J. (1988). ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14, 237241.CrossRefGoogle Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose rate conversion factors: update. Ancient TL 29, 58.Google Scholar
Guilday, J.E., Cotter, J.F.P., Cundall, D., Evenson, E.B., Gatewood, J.B., Morgan, A.V., Morgan, A., et al. , 1984. Paleoecology of an early Pleistocene (Irvingtonian) cenote: preliminary report on the Hanover Quarry No. 1 Fissure, Adams County, Pennsylvania. In: Mahaney, W.C., (Ed.), Correlation of Quaternary Chronologies. Geo Books, Norwich, England, pp. 119132.Google Scholar
Hibbard, C.W., 1944. Stratigraphy and vertebrate paleontology of Pleistocene deposits of southwestern Kansas. Bulletin of the Geological Society of America 55, 707754.CrossRefGoogle Scholar
Hibbard, C.W., 1949. Pleistocene vertebrate paleontology in North America. Bulletin of the Geological Society of America 60, 14171428.CrossRefGoogle Scholar
Hibbard, C.W., 1959. Late Cenozoic microtine rodents from Wyoming and Idaho. Papers of the Michigan Academy of Science, Arts, and Letters 44, 340.Google Scholar
Hibbard, C.W., 1969. The rabbits (Hypolagus and Pratilepus) from the Upper Pliocene, Hagerman Local Fauna of Idaho. Michigan Academician 1, 8197.Google Scholar
Hibbard, C.W., Zakrzewski, R.J., 1967. Phyletic trends in the late Cenozoic microtine Ophiomys gen. nov., from Idaho. Contributions from the Museum of Paleontology, The University of Michigan 21, 255271.Google Scholar
Izett, G.A., Honey, J.G., 1995. Geologic map of the Irish Flats NE Quadrangle, Meade County, Kansas. U. S. Geological Survey Miscellaneous Investigations Series Map I-2498.Google Scholar
Izett, G.A., Pierce, K.L., Naeser, N.D., Jaworowski, C., 1992. Isotopic dating of Lava Creek B tephra in terrace deposits along the Wind River, Wyoming–implications for post 0.6 Ma uplift of the Yellowstone hotspot. Abstract of Programs, Geological Society of America 24, A102.Google Scholar
Jass, C.N., Bell, C.J., 2011. Arvicoline rodent fauna from the Room 2 excavation in Cathedral Cave, White Pine County, Nevada, and its biochronologic significance. Journal of Vertebrate Paleontology 31, 684699.CrossRefGoogle Scholar
Joannes-Boyau, R., 2013. Detailed protocol for an accurate non-destructive direct dating of tooth enamel fragment using electron spin resonance. Geochronometria 40, 322333.CrossRefGoogle Scholar
Joannes-Boyau, R., Duval, M., Bodin, T., 2018. MCDoseE 2.0. A new Markov Chain Monte Carlo program for ESR dose response curve fitting and dose evaluation. Quaternary Geochronology 44, 1322.CrossRefGoogle Scholar
Joannes-Boyau, R., Grün, R., 2011. A comprehensive model for CO2− radicals in fossil tooth enamel: implications for ESR dating. Quaternary Geochronology 6, 8297.CrossRefGoogle Scholar
Joannes-Boyau, R., Grün, R., Bodin, T., 2010. Decomposition of the laboratory irradiation component of angular ESR spectra of fossil tooth enamel fragments. Applied Radiation and Isotopes 68, 17981808.CrossRefGoogle ScholarPubMed
Johnson, N.M., Opdyke, N.D., Lindsay, E.H., 1975. Magnetic polarity stratigraphy of Pliocene-Pleistocene terrestrial deposits and vertebrate faunas, San Pedro Valley, Arizona. Geological Society of America Bulletin 86, 512.2.0.CO;2>CrossRefGoogle Scholar
Lindsay, E.H., Johnson, N.M., Opdyke, N.D., 1975. Preliminary correlation of North American land mammal ages and geomagnetic Chronology. In: Smith, G.R., Friedland, N.E., (Eds.), Studies on Cenozoic Paleontology and Stratigraphy in Honor of Claude W. Hibbard. Claude W. Hibbard Memorial Volume 3, University of Michigan, The Museum of Paleontology Papers on Paleontology 12, 111–119.Google Scholar
Ludwig, K.R., 2012. User's manual for Isoplot 3.75. Berkeley Geochronology Center, Special Publication 5, 175.Google Scholar
Lundelius, E.L. Jr., Churcher, C.S., Downs, T., Harington, C.R., Lindsay, E.H., Schultz, G.E., Semken, H.A., Webb, S.D., Zakrzewski, R.J., 1987. The North American Quaternary sequence. In: Woodburne, M.O., (Ed.), Cenozoic Mammals of North America: Geochronology and Biostratigraphy. University of California Press, Berkeley, CA, pp. 211235.Google Scholar
Martin, R.A., 1996. Dental evolution and size change in the North American muskrat: classification and tempo of a presumed phyletic sequence. In: Stewart, K.M., Seymour, K.L., (Eds.), Paleoecology and Paleoenvironments of Late Cenozoic Mammals: Tributes to the Career of C. S. (Rufus) Churcher. University of Toronto Press, Canada. pp. 431457.CrossRefGoogle Scholar
McDonald, G.H., Link, P.K., Lee, D.E., 1996. An overview of the geology and paleontology of the Pliocene Glenns Ferry Formation, Hagerman Fossil Beds National Monument. In: Hughes, S.S., Thomas, R.C., (Eds.), Geology of the Crook in the Snake River Plain, Twin Falls and Vicinity, Idaho. Proceedings Volume from the 21st Annual Field Conference of the Tobacco Root Geological Society. College of Southern Idaho, Twin Falls, Idaho. August 8–11, 1996. Northwest Geology 26, 1645.Google Scholar
Morgan, G.S., Hulbert, R.C. Jr., 1995. Overview of the geology and vertebrate paleontology of the Leisey Shell Pit Local Fauna, Hillsborough County, Florida. In: Hulbert, Jr., R.C., Morgan, G.S., Webb, S.D., (Eds.), Paleontology and Geology of the Leisey Shell Pits, Early Pleistocene of Florida. Bulletin of the Florida Museum of Natural History 37 (Part I), 1–92.Google Scholar
Nelson, R.S., Semken, H.A., 1970. Paleoecological and stratigraphic significance of the muskrat in Pleistocene deposits. Geological Society of America Bulletin 81, 37333738.CrossRefGoogle Scholar
Nicholas, G., 1953. Recent paleontological discoveries from Cumberland Bone Cave. The Scientific Monthly 76, 301305.Google Scholar
Nicholas, G., 1955. Bones and a Railway. In: Mohr, C.E., Sloane, H.N., (Eds.), Celebrated American Caves, Rutgers University Press, New Brunswick, NJ, pp. 172184.Google Scholar
Ogg, J.G., 2012. Geomagnetic polarity time scale. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., (Eds.), The Geologic Time Scale 2012. Volume 1. Elsevier BV, Amsterdam, The Netherlands. pp. 85113.Google Scholar
Pfaff, K.S., 1990. Irvingtonian Microtus, Pedomys, and Pitymys (Mammalia, Rodentia, Cricetidae) from Trout Cave No. 2, West Virginia. Annals of Carnegie Museum 59, 105134.Google Scholar
Pfaff, K.S., 1991. An Irvingtonian mammalian fauna from Trout Cave No. 2, Pendleton County, West Virginia. Unpublished Master's thesis, University of Minnesota, Minneapolis.Google Scholar
Repenning, C.A., 1992. Allophaiomys and the age of the Olyor Suite, Krestovka Sections, Yakutia. United States Geological Survey Bulletin 2037, 198.Google Scholar
Repenning, C.A., 1987. Biochronology of the microtine rodents of the United States. In: Woodburne, M.O., (Ed.), Cenozoic Mammals of North America. Geochronology and Biostratigraphy. University of California Press, Berkeley, CA, pp. 236268.Google Scholar
Repenning, C.A., Fejfar, O., Heinrich, W.D., 1990. Arvicolid rodent biochronology of the northern hemisphere. In: Fejfar, O., Heinrich, W.D., (Eds.), International Symposium. Evolution, Phylogeny and Biostratigraphy of Arvicolids (Rodentia, Mammalia). Rohanov (Czechoslovakia) May 1987. Geological Survey, Prague, Czechoslovakia, pp. 385417.Google Scholar
Repenning, C.A., Grady, F., 1988. The microtine rodents of the Cheetah Room fauna, Hamilton Cave, West Virginia, and the spontaneous origin of Synaptomys. United States Geological Survey Bulletin 1853, 132.Google Scholar
Repenning, C.A., Weasma, T.R., Scott, G.R., 1995. The early Pleistocene (latest Blancan – earliest Irvingtonian) Froman Ferry fauna and history of the Glenns Ferry Formation, southwestern Idaho. United States Geological Survey Bulletin 2105, 186.Google Scholar
Rogers, K.L., Larson, E.E., Smith, G., Katzman, D., Smith, G.R., Cerling, T., Wang, Y., Baker, R.G., Lohmann, K.C., Repenning, C.A., et al. , 1992. Pliocene and Pleistocene geologic and climatic evolution in the San Luis Valley of south-central Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 5586.CrossRefGoogle Scholar
Rogers, K.L., Repenning, C.A., Forester, R.M., Larson, E.E., Hall, S.A., Smith, G.R., Anderson, E., Brown, T.J., 1985. Middle Pleistocene (late Irvingtonian: Nebraskan) climatic changes in south-central Colorado. National Geographic Research 1(4), 535563.Google Scholar
Savage, D.E., 1951. Late Cenozoic vertebrates of the San Francisco Bay region. University of California Publications, Bulletin of the Department of Geological Sciences 28, 215314.Google Scholar
Shao, Q., Bahain, J.J., Dolo, J.M., Falguères, C., 2014. Monte Carlo approach to calculate US-ESR age and age uncertainty for tooth enamel. Quaternary Geochronology 22, 99106.CrossRefGoogle Scholar
Tomida, Y., 1987. Small Mammal Fossils and Correlation of Continental Deposits, Safford and Duncan Basins, Arizona, USA. National Science Museum, Tokyo, Japan.Google Scholar
Van der Meulen, A.J., 1978. Microtus and Pitymys (Arvicolidae) from Cumberland Cave, Maryland, with a comparison of some new and old world species. Annals of Carnegie Museum 47, 101145.Google Scholar
Wheatley, C.M., 1871. Notice of the discovery of a cave in eastern Pennsylvania, containing remains of post-Pliocene fossils, including those of mastodon, tapir, Megalonyx, Mylodon, etc. The American Journal of Science and Arts 101, 235237.CrossRefGoogle Scholar
Winkler, A.J., Grady, F., 1990. The middle Pleistocene rodent Atopomys (Cricetidae: Arvicolinae) from the eastern and south-central United States. Journal of Vertebrate Paleontology 10, 484490.CrossRefGoogle Scholar
Wood, H.E. II, Chaney, R.W., Clark, J., Colbert, E.H., Jepsen, G.L., Reeside, J.B. Jr., Stock, C., 1941. Nomenclature and correlation of the North American continental Tertiary. Bulletin of the Geological Society of America 52, 148, Plate 1.CrossRefGoogle Scholar
Woodroffe, C.D., Short, S.A., Stoddart, D. R., Spencer, T., Harmon, R.S., 1991. Stratigraphy and chronology of late Pleistocene reefs in the Southern Cook Islands, South Pacific. Quaternary Research 35, 246263.CrossRefGoogle Scholar
Zakrzewski, R.J., 1969. The rodents from the Hagerman Local Fauna, upper Pliocene of Idaho. Contributions from the Museum of Paleontology, The University of Michigan 23, 136.Google Scholar
Zakrzewski, R.J., 1972. Fossil microtines from late Cenozoic deposits in the Anza-Borrego Desert, California, with the description of a new subgenus of Synaptomys. Natural History Museum of Los Angeles County Contributions in Science 221, 112.Google Scholar