Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:35:33.336Z Has data issue: false hasContentIssue false

Radiocarbon analysis of halophilic microbial lipids from an Australian salt lake

Published online by Cambridge University Press:  20 January 2017

P. Sargent Bray*
Affiliation:
Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
Claudia M. Jones
Affiliation:
Department of Earth and Planetary Science, University of California Berkeley, Berkeley, USA
Stewart J. Fallon
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
Jochen J. Brocks
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
Simon C. George
Affiliation:
Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
*
*Corresponding author. Fax: + 61 02 9850 6904. E-mail address:[email protected] (P.S. Bray).

Abstract

Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennet, C.L., Buekens, R.P., Clover, M.R., Gove, H.E., Liebert, R.B., Litherland, A.E., Purser, K.H., Sondheim, W.E., (1977). Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198, 508510.Google Scholar
Bowler, J.M., Teller, J.T., (1986). Quaternary evaporites and hydrological changes, Lake Tyrrell, north-west Victoria. Australian Journal of Earth Sciences 33, 4363.CrossRefGoogle Scholar
Bray, E.E., Evans, E.D., (1961). Distribution of n-paraffins as a clue to the recognition of source beds. Geochimica et Cosmochimica Acta 22, 215.Google Scholar
Buhring, S.I., Smittenberg, R.H., Sachse, D., Lipp, J.S., Golubic, S., Sachs, J.P., Hinrichs, K.U., Summons, R.E., (2009). A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labelling approach. Geobiology 7, 308323.Google Scholar
Cartwright, I., (2010). Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. Journal of Hydrology 382, 174187.Google Scholar
Eglinton, T.I., Aluwihare, L.I., Bauer, J.E., Druffel, E.R.M., McNichol, A.P., (1996). Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry 68, 904912.Google Scholar
Eglinton, T.I., Benitez-Nelson, B.C., Pearson, A., McNichol, A.P., Bauer, J.E., Druffel, E.R.M., (1997). Variability in radiocarbon ages of individual organic compounds from marine sediments. Science 277, 796799.Google Scholar
Fallon, S.J., Fifield, J.K., Chappell, J.M., (2010). The next chapter in radiocarbon dating at the Australian National University: status report on the single stage AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 898901.CrossRefGoogle Scholar
Gillespie, R., Magee, J.W., Luly, J.G., Dlugokencky, E., Sparks, R.J., Wallace, G., (1991). AMS radiocarbon dating in the study of arid environments: Examples from Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, and Palaeoecology 84, 333338.CrossRefGoogle Scholar
Luly, J.G., Bowler, J.M., Head, M.J., (1986). A radiocarbon chronology from the playa Lake Tyrrell, northwestern Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology 54, 171180.CrossRefGoogle Scholar
Madigan, M.T., Martinko, J.M., Dunlap, P.V., Clark, D.P., (2009). Biology of Microorganisms. Pearson Benjamin Cummings, San Francisco.Google Scholar
Magee, J.W., Bowler, J.M., Miller, G.H., Williams, D.L.G., (1995). Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 342.Google Scholar
Mollenhauer, G., Montlucon, D., Eglinton, T.I., (2005). Radiocarbon dating of alkenones from marine sediments: II. Assessment of carbon process blanks. Radiocarbon 47, 413424.CrossRefGoogle Scholar
Moros, M., De Deckker, P., Jansen, E., Perner, K., Telford, R.J., (2009). Holocene climate variability in the Souhern Ocean recorded in a deep-sea sediment core off South Australia. Quaternary Science Reviews 28, 19321940.Google Scholar
Muller, R., (1977). Radioisotope dating with a cyclotron. Science 196, 489494.CrossRefGoogle ScholarPubMed
Nelson, D.E., Korteling, R.G., (1977). Carbon-14: direct detection at natural concentrations. Science 198, 507508.Google Scholar
Ohkouchi, N., Eglinton, T.I., Keigwin, L.D., Hayes, J.M., (2002). Spatial and temporal offsets between proxy records in a sediment drift. Science 298, 12241227.Google Scholar
Oren, A., Sorenson, K.B., Canfield, D.E., Teske, A.P., Ionescu, D., Lipski, A., Altendorf, K., (2009). Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626, 1526.Google Scholar
Pearson, A., Eglinton, T.I., (2000). The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific delta14Χ ανδ δ13Χ δατα. Organic Geochemistry 31, 11031116.Google Scholar
Pearson, A., Eglinton, T.I., McNichol, A.P., (2000). An organic tracer for surface ocean radiocarbon. Paleoceanography 15, 541550.Google Scholar
Pearson, A., McNichol, A.P., Benitez-Nelson, B.C., Hayes, J.M., Eglinton, T.I., (2001). Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound specific d14C analysis. Geochimica et Cosmochimica Acta 65, 31233137.Google Scholar
Peters, K.E., Walters, C.C., Moldowan, J.M., (2007). The Biomarker Guide. Cambridge University Press, .Google Scholar
Petrides, B., Cartwright, I., Weaver, T.R., (2006). The evolution of groundwater in the Tyrrell catchment, south-central Murray Basin, Victoria, Australia. Hydrogeology Journal 14, 15221543.Google Scholar
Roden, E., Blothe, M., Shelobolina, E., (2009). Microbial Fe cycling and mineralization in sediments of an acidic, hypersaline lake (Lake Tyrrell, Victoria, Australia). American Geophysical Union, Fall Meeting.Google Scholar
Shah, S., Mollenhauer, G., Ohkouchi, N., Eglinton, T.I., Pearson, A., (2008). Origins of archaeal tetraether lipids in sediments: insights from radiocarbon analysis. Geochimica et Cosmochimica Acta 72, 45774594.Google Scholar
Sorenson, K.B., Canfield, D.E., Oren, A., (2004). Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Applied and Environmental Microbiology 70, 16081616.Google Scholar
Stephenson, A.E., (1986). Lake Bungunnia – a Plio-Pleistocene megalake in southern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 137156.Google Scholar
Stuiver, M., Polach, H.A., (1977). Discussion: reporting of 14C data. Radiocarbon 19, 355363.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Teller, J.T., Bowler, J.M., Macumber, P.G., (1982). Modern sedimentation and hydrology in Lake Tyrrell, Victoria. Journal of the Geological Society of Australia 29, 159175.Google Scholar
Volkman, J.K., (1986). A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry 9, 8399.Google Scholar