Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T11:29:29.432Z Has data issue: false hasContentIssue false

Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project

Published online by Cambridge University Press:  20 January 2017

Sherilyn C. Fritz*
Affiliation:
Department of Geosciences, University of Nebraska, Lincoln, NE 68588-0340, USA School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0340, USA
Paul A. Baker
Affiliation:
Division of Earth and Ocean Sciences and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
Geoffrey O. Seltzer
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA
Ashley Ballantyne
Affiliation:
Division of Earth and Ocean Sciences and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708, USA
Pedro Tapia
Affiliation:
Department of Geosciences, University of Nebraska, Lincoln, NE 68588-0340, USA
Hai Cheng
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
R. Lawrence Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
*
*Corresponding author. Fax: +402 472 4917. E-mail address:[email protected](S.C. Fritz).

Abstract

A 136-m-long drill core of sediments was recovered from tropical high-altitude Lake Titicaca, Bolivia-Peru, enabling a reconstruction of past climate that spans four cycles of regional glacial advance and retreat and that is estimated to extend continuously over the last 370,000 yr. Within the errors of the age model, the periods of regional glacial advance and retreat are concordant respectively with global glacial and interglacial stages. Periods of ice advance in the southern tropical Andes generally were periods of positive water balance, as evidenced by deeper and fresher conditions in Lake Titicaca. Conversely, reduced glaciation occurred during periods of negative water balance and shallow closed-basin conditions in the lake. The apparent coincidence of positive water balance of Lake Titicaca and glacial growth in the adjacent Andes with Northern Hemisphere ice sheet expansion implies that regional water balance and glacial mass balance are strongly influenced by global-scale temperature changes, as well as by precessional forcing of the South American summer monsoon.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anhuf, D., Ledru, M.P., Behling, H., Da Cruz, F.W., Cordeiro, R.C., Van der Hammen, T., Karmann, I., Marengo, J.A., De Oliveira, P., Pessenda, L., Siffedine, A., Albuquerque, A.L., Da Silva Dias, P.L.(2006). Paleo-environmental change in Amazonian and African rainforest during the LGM.. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 510527.CrossRefGoogle Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C.(2001a). Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano.. Nature 409, 698701.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P.(2001b). The history of South American tropical precipitation for the past 25,000 years.. Science 291, 640643.CrossRefGoogle ScholarPubMed
Baker, P.A., Fritz, S.C., Garland, J., Ekdahl, E.(2005). Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru and its relationship to North Atlantic climate variation.. Journal of Quaternary Science 20, 655662.CrossRefGoogle Scholar
Berger, A., Loutre, M.F.(1991). Insolation values for the climate of the last 10 million years.. Quaternary Sciences Review 10, 297317.Google Scholar
Blodgett, T.A., Lenters, J.D., Isacks, B.L.(1997). Constraints on the origin of paleolake expansions in the central Andes.. Earth Interactions 1, 128.2.3.CO;2>CrossRefGoogle Scholar
Bradley, R., Vuille, M., Hardy, D., Thompson, L.G.(2003). Low latitude ice cores record Pacific sea surface temperatures.. Geophysical Research Letters 30, 23-1-23-4.Google Scholar
Broecker, W.S. (1963). A preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurements on marine carbonates.. Journal of Geophysical Research 68, 28172834.CrossRefGoogle Scholar
Broecker, W.S., Denton, G.H.(1989). The role of ocean–atmosphere reorganizations in glacial cycles.. Geochimica et Cosmochimica Acta 53, 24652501.Google Scholar
Bush, M.B., Miller, M.C., De Oliveira, P.E., Colinvaux, P.A.(2002). Orbital forcing signal in sediments of two Amazonian lakes.. Journal of Paleolimnology 27, 341352.CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., Urrego, D.H.(2004). 48,000 years of climate and forest change in a biodiversity hot spot.. Science 303, 827829.Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., Asmerom, Y.(2000). The half-lives of uranium-234 and thorium-230.. Chemical Geology 169, 1733.CrossRefGoogle Scholar
Clement, A.C., Hall, A., Broccoli, A.J.(2004). The importance of precessional signals in the tropical climate.. Climate Dynamics 22, 327341.Google Scholar
Cook, K.H., Vizy, E.K.(2006). South American climate during the Last Glacial Maximum: delayed onset of the South American monsoon.. Journal of Geophysical Research 111, D02110 10.1029/2005JD005980.Google Scholar
Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D.(2004). Amazonian forest dieback under climate-carbon cycle projections for the 21st century.. Theoretical and Applied Climatology 78, 137156.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B.(2000). A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology.. The Holocene 10, 2132.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B.(2001). Late Quaternary climate and hydrology of tropical South America inferred from isotopic and chemical model of Lake Titicaca, Bolivia and Peru.. Quaternary Research 56, 19.Google Scholar
Cruz, F.W.J., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O.J.(2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil.. Nature 434, 6366.Google Scholar
Edwards, R.L., Chen, J.H., Wasserburg, G.J.(1987). U-238, U-234, Th-230, Th-232 systematics and the precise measurement of time over the past 500,000 years.. Earth and Planetary Science Letters 81, 175192.Google Scholar
Francou, B.M., Vuille, M., Wagnon, P., Mendoza, J., Sicart, J.-E.(2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chalcataya, Bolivia.. Journal of Geophysical Research 108, D5 4154.Google Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.-L., Lou, S.(2004). Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America.. Quaternary Research 61, 95104.Google Scholar
Garreaud, R., Vuille, M., Clement, A.C.(2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes.. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 522.Google Scholar
Hanselman, J.A., Gosling, W.D., Paduano, G.M., Bush, M.B.(2005). Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca.. Journal of Quaternary Science 20, 663670.CrossRefGoogle Scholar
Hastenrath, S., Polzin, D., Francou, B.(2004). Circulation variability reflected in ice core and lake records of the southern tropical Andes.. Climatic Change 64, 361375.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U.(2001). Southward migration of the intertropical convergence zone through the Holocene.. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Hooghiemstra, H., Melice, J.L., Berger, A., Shackleton, N.J.(1993). Frequency spectra and paleoclimatic variability of the high-resolution 30–1450 ka Funza I pollen record (Eastern Cordillera, Colombia).. Quaternary Science Reviews 12, 141156.Google Scholar
Hostetler, S.W., Clark, P.U.(2000). Tropical climate at the Last Glacial Maximum inferred from glacial balance modeling.. Science 290, 17471750.Google Scholar
Hughen, K., Lehman, J.S., Overpeck, J., Marchal, O., Herring, C., Turnbull, J.(2004). Carbon-14 activity and global carbon cycle changes over the past 50,000 years.. Science 303, 202207.Google Scholar
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M.(1971). Precision measurement of half-lives and specific activities of 235U and 238U.. Physical Reviews, C 4, 18891906.Google Scholar
Klein, A.G., Seltzer, G.O., Isacks, B.L.(1999). Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile.. Quaternary Science Reviews 18, 6384.Google Scholar
Kull, C., Grosjean, M.(2000). Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate-glacier model.. Journal of Glaciology 46, 622632.Google Scholar
Kutzbach, J. (1981). Monsoon climate of the early Holocene: climate experiments with the Earth's orbital parameters for 9000 years ago.. Science 214, 5961.Google Scholar
Mariaca, J.J. (1985). Balance hidrico superficial de la cuenca del Lago Poopo y los Salares de Uyuni y Coipasa.. SENAMHI, La Paz, Bolivia.Google Scholar
Martin, L., Bertaux, J., Correge, T., Ledru, M.-P., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., Turcq, B.(1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P.. Quaternary Research 47, 117122.Google Scholar
Mayle, F.E., Beerling, D.J., Gosling, W.D., Bush, M.B.(2004). Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum.. Royal Society of London, Philosophical Transactions, B 359, 499514.Google Scholar
Nobre, P., Shukla, J.(1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America.. Journal of Climate 9, 24642479.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M.L., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.(1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.. Nature 399, 429437.Google Scholar
Pierrehumbert, R.T. (1999). Subtropical water vapor as a mediator of rapid global climate change.. Clark, P.U., Webb, R.S., Keigwin, L.D. Mechanisms of Global Climate Change at Millennial Time Scales 339362.Google Scholar
Placzek, C., Quade, J., Paatchett, P.J.(2006). Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change.. Geological Society of America Bulletin 118, 515535.Google Scholar
Porter, S. (2001). Snowline depression in the tropics during the last glaciation.. Quaternary Science Reviews 20, 10671091.Google Scholar
Richerson, P.J., Neale, P.J., Wurtsbaugh, W.A., Alfaro Tapia, R., Vincent, W.F.(1986). Patterns of temporal variation in Lake Titicaca. A high altitude tropical lake. I. Background, physical and chemical processes, and primary production.. Hydrobiologia 138, 205220.Google Scholar
Roche, M.A., Bourges, J., Cortes, J., Mattos, R.(1992). Climatology and hydrology of the Lake Titicaca basin.. Dejoux, C., Iltis, A. Lake Titicaca Kluwer, Netherlands.6388.Google Scholar
Rowe, H.D., Dunbar, R.B., Mucciarone, D.A., Seltzer, G.O., Baker, P.A., Fritz, S.C.(2002). Insolation, moisture balance and climate change on the South American Altiplano since the Last Glacial Maximum.. Climatic Change 52, 175199.Google Scholar
Rowe, H.D., Guilderson, T.P., Dunbar, R.B., Southon, J., Seltzer, G.O., Mucciarone, D.A., Fritz, S.C., Baker, P.A.(2003). Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America.. Global and Planetary Change 38, 273290.CrossRefGoogle Scholar
Salati, E., Dall 'Olio, A., Matsui, E., Gat, J.R.(1979). Recycling of water in the Amazon Basin: an isotopic study.. Water Resources Research 15, 12501258.Google Scholar
Seltzer, G., Rodbell, D., Burns, S.(2000). Isotopic evidence for late Quaternary climatic change in tropical South America.. Geology 28, 3538.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B.(2002). Early warming of tropical South America at the last glacial–interglacial transition.. Science 296, 16851686.Google Scholar
ServantVildary, S. (1992). The diatoms.. Dejoux, C., Iltis, A. Lake Titicaca Kluwer, Netherlands.163175.Google Scholar
Shackleton, N.J. (2000). The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity.. Science 289, 18971902.Google Scholar
Shen, C.-C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S., Edmonds, H.N.(2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry.. Chemical Geology 185, 165178.Google Scholar
Smith, J.A., Finkel, R.C., Farber, D.L., Rodbell, D.T., Seltzer, G.O.(2005a). Moraine preservation and boulder erosion in the tropical Andes: interpreting old surface exposure ages in glaciated valleys.. Journal of Quaternary Science 20, 735758.Google Scholar
Smith, J.A., Seltzer, G.O., Farber, D.L., Rodbell, D.T., Finkel, C.(2005b). Early local Last Glacial Maximum in the tropical Andes.. Science 308, 678681.CrossRefGoogle ScholarPubMed
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G., Hugen, K., Kromer, B., McCormack, F.G., Plicht, J.v.d., Spurk, M.(1998). INTERCAL98 radiocarbon age calibration 24,000 cal BP.. Radiocarbon 40, 10411083.Google Scholar
Tapia, P.M., Fritz, S.C., Baker, P.A., Seltzer, G.O., Dunbar, R.B.(2003). A late Quaternary diatom record of tropical climate history from Lake Titicaca (Peru and Bolivia).. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 139164.Google Scholar
Van der Hammen, T., Hooghiemstra, H.(2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia.. Quaternary Science Review 19, 725742.CrossRefGoogle Scholar
Van't Veer, R., Hooghiemstra, H.(2000). Montane forest evolution during the last 650,000 yr in Colombia: a multivariate approach based on pollen record Funza-1.. Journal of Quaternary Science 15, 329346.Google Scholar
Vizy, E.K., Cook, K.H.(2005). Evaluation of Last Glacial Maximum sea surface temperature reconstructions through their influence on South American climate.. Journal of Geophysical Research 110, D11105.Google Scholar
Vuille, M., Bradley, R.S., Keimig, F.(2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing.. Journal of Geophysical Research 105, 1244712460.Google Scholar
Vuille, M., Bradley, R., Werner, M., Healy, R., Keimig, F.(2003a). Modeling 18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls.. Journal of Geophysical Research 108, acl1acl24.Google Scholar
Vuille, M., Bradley, R., Werner, M., Keimig, F.(2003b). 20th century climate change in the tropical Andes: observations and model results.. Climatic Change 59, 7599.Google Scholar
Wang, X.L., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.-C.(2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies.. Nature 432, 740743.Google Scholar
Zhou, J., Lau, K.-M.(1998). Does a monsoon climate exist over South America?.. Journal of Climate 11, 10201040.2.0.CO;2>CrossRefGoogle Scholar
Zhou, J., Lau, K.-M.(2001). Principal modes of interannual and decadal variability of summer rainfall over South America.. International Journal of Climatology 21, 16231644.CrossRefGoogle Scholar