Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T11:09:41.514Z Has data issue: false hasContentIssue false

Provenance of freshwater pulses in the Gulf of Mexico during the last deglaciation

Published online by Cambridge University Press:  20 January 2017

T. Sionneau*
Affiliation:
Université Lille 1, UMR CNRS 8157 « Géosystèmes », Bât. SN5, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
V. Bout-Roumazeilles
Affiliation:
Université Lille 1, UMR CNRS 8157 « Géosystèmes », Bât. SN5, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
B.P. Flower
Affiliation:
College of Marine Science, University of South Florida, St. Petersburg, FL, 33701, USA
A. Bory
Affiliation:
Université Lille 1, UMR CNRS 8157 « Géosystèmes », Bât. SN5, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA
N. Tribovillard
Affiliation:
Université Lille 1, UMR CNRS 8157 « Géosystèmes », Bât. SN5, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
C. Kissel
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, 91198 Gif-sur-Yvette, France
B. Van Vliet-Lanoë
Affiliation:
UMR 6538 CNRS, Domaines Océaniques, IUEM, 29280 Plouzané, France
J.C. Montero Serrano
Affiliation:
Université Lille 1, UMR CNRS 8157 « Géosystèmes », Bât. SN5, Cité Scientifique, 59655 Villeneuve d'Ascq Cedex, France
*
*Corresponding author. Present address: UMR 6538 CNRS, Domaines Océaniques, IUEM, 29280 Plouzané, France. Fax: + 33 2 98 49 87 60. [email protected] (T. Sionneau), [email protected] (V. Bout-Roumazeilles), [email protected] (B.P. Flower), [email protected] (A. Bory), [email protected] (N. Tribovillard), [email protected] (C. Kissel), [email protected] (B. Van Vliet-Lanoë), [email protected] (J.C. Montero Serrano).

Abstract

During the last deglaciation, the decaying Laurentide Ice Sheet (LIS) delivered huge volumes of meltwater toward the Gulf of Mexico. The present investigation of clay mineralogy and grain-size characteristics of terrigenous sediments deposited in the Orca Basin (Gulf of Mexico) offers a unique opportunity to link the marine record of these meltwater floods with the reconstructed continental glacial history and the modeled drainage patterns. Five peculiar sedimentary levels, characterized by high smectite content and low CaCO3 content, were identified and occurred simultaneously with major meltwater floods. According to recently published clay mineral distribution maps for North America, these results help to pinpoint the southwestern margin of the LIS as a main contributor to most of the meltwater discharges. In addition, the peculiar mineralogical composition (illite and chlorite-rich) of the sediments characterizing the meltwater episode associated with Heinrich event 1 suggests a provenance from the Great Lakes area, supporting the interpretation of destabilization of the LIS southeastern margin during this event. Decreased terrigenous contribution associated with changing provenance of sediments after 12.9 cal ka BP suggests strong modifications of the continental hydrography in relation to Lake Agassiz history and changes in the morphology of Mississippi delta due to rising sea level.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P. Meltwater flooding events in the Gulf of Mexico revisited: implications for rapid climate changes during the last deglaciation. Paleoceanography 18, (2003). 1079 Google Scholar
Aharon, P. Entrainment of meltwaters in hyperpycnal flows during deglaciation superfloods in the Gulf of Mexico. Earth and Planetary Science Letters 241, (2006). 260270.CrossRefGoogle Scholar
Bard, E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3, (1988). 635645.CrossRefGoogle Scholar
Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. GSA Bulletin 76, (1965). 803832.CrossRefGoogle Scholar
Bond, G.C. Climate and the conveyor. Nature 377, (1995). 383384.CrossRefGoogle Scholar
Bond, G.C., and Lotti, R. Iceberg discharges into the North Atlantic on millennial time scales during the last deglaciation. Science 267, (1995). 10051010.CrossRefGoogle Scholar
Bout-Roumazeilles, V., and Trentesaux, A. Sedimentologic analysis of cores, recovered from the RV Marion Dufresne cruise in the Gulf of Mexico, 2–18 July, 2002, chapter 5. Winters, W.J., Lorenson, T.D., and Paull, C.K. Initial Report of the IMAGES VIII/PAGE 127 Gas Hydrate and Paleoclimate Cruise on the R/V Marion Dufresne in the Gulf of Mexico, 2–18 July 2002: U.S. Geological Survey Open-File Report 2004-1358 ONLINE. (2007). Google Scholar
Bout-Roumazeilles, V., Debrabant, P., Labeyrie, L., Chamley, H., and Cortijo, E. Latitudinal control of astronomical forcing parameters on the high-resolution clay mineral distribution in the 45°–60°N range in the North Atlantic Ocean during the past 300, 000 year. Paleoceanography 12, (1997). 671686.CrossRefGoogle Scholar
Bout-Roumazeilles, V., Cortijo, E., Labeyrie, L., and Debrabant, P. Clay mineral evidence of nepheloid layer contribution to the Heinrich layers in the Northwest Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 146, (1999). 211228.CrossRefGoogle Scholar
Bout-Roumazeilles, V., Nebout, N.C., Peyron, O., Cortijo, E., Landais, A., and Masson-Delmotte, V. Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. Quaternary Science Reviews 26, (2007). 31973215.Google Scholar
Broecker, W.S. The great ocean conveyor. Oceanography 4, (1991). 7989.Google Scholar
Broecker, W.S., Andrée, M., Wolfli, W., Oeschger, H., Bonani, G., Kennett, J., and Peteet, D. The chronology of the last deglaciation: implications to the cause of the Younger Dryas event. Paleoceanography 3, (1988). 119.CrossRefGoogle Scholar
Broecker, W.S., Andree, M., Bonani, G., Wolfli, W., Klas, M., Mix, A., and Oeschger, H. Comparison between radiocarbon ages obtained on coexisting planktonic foraminifera. Paleoceanography 3, (1988). 647657.CrossRefGoogle Scholar
Broecker, W.S., Kennett, J.P., Flower, B.P., Teller, J.T., Trumbore, S., Bonani, G., and Wolfli, W. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, (1989). 318321.CrossRefGoogle Scholar
Broecker, W.S., Bond, G., Klas, M., Bonani, G., and Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5, 4 (1990). 469477.CrossRefGoogle Scholar
Broecker, W.S., Klas, M., Clark, E., Trumbore, S., Bonani, G., Wolfli, W., and Ivy, S. Accelerator mass spectrometer radiocarbon measurements on foraminifera shells from deep-sea cores. Radiocarbon 32, (1990). 119133.CrossRefGoogle Scholar
Brown, G., and Brindley, G.W. X-ray diffraction procedures for clay mineral identification. Brindley, G.W., and Brown, G. Crystal Structures of Clay Minerals and their X-ray Identification. (1980). Mineralogical Society, London. 305359.Google Scholar
Brown, P.A., and Kennett, J.P. Megaflood erosion and meltwater plumbing changes during last North American deglaciation recorded in the Gulf of Mexico sediments. Geology 26, (1998). 599602.2.3.CO;2>CrossRefGoogle Scholar
Brown, P.A., Kennett, J.P., and Ingram, B.L. Marine evidence for episodic Holocene megafloods in North America and the northern Gulf of Mexico. Paleoceanography 14, (1999). 498510.CrossRefGoogle Scholar
Brown, A.V., Brown, K.B., Jackson, D.C., and Pierson, W.K. Lower Mississippi River and its tributaries. Benke, A.C., and Cushing, C.E. Rivers of North America. (2005). Elsevier Academic Press, London. 231271.Google Scholar
Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J., and Meissner, K.J. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. PNAS 104, (2007). 65566561.Google Scholar
Chamley, H., and Kennett, J.P. Argiles détritiques, Foraminifères planctoniques et paléoclimats, dans des sédiments quaternaires du golfe du Mexique. Comptes Rendus de l' Academie des Sciences Paris 282, (1976). 14151418. Série D Google Scholar
Clark, P.U., Marshall, S.J., Clarke, G.K.C., Hostetler, S.W., Licciardi, J.M., and Teller, J.T. Freshwater forcing of abrupt climate change during the Last Glaciation. Science 293, (2001). 283287.Google Scholar
Delong, M.D. Upper Mississippi River Basin. Benke, A.C., and Cushing, C.E. Rivers of North America. (2005). Elsevier Academic Press, London. 327362.Google Scholar
Dyke, A.S. An outline of North American deglaciation with emphasis on central and northern Canada. Ehlers, J., and Gibbard, P.L. Quaternary Glaciations — Extent and Chronology, Part II. (2004). Elsevier B.V, Amsterdam. 373424.Google Scholar
Espitalié, J., Deroo, G., and Marquis, F. La pyrolyse Rock Eval et ses applications. Part B Rev. Inst. Franç. Pétr. 40, (1986). 755784.CrossRefGoogle Scholar
Fairbanks, R.G. A 17, 000-years glacio-eustatics sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.CrossRefGoogle Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M., and Nadeau, M.-J. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, (2005). 17811796.CrossRefGoogle Scholar
Fanning, A.F., and Weaver, A.J. Temporal-geographical meltwater influences on the North Atlantic Conveyor: implications for the Younger Dryas. Paleoceanography 12, (1997). 307320.CrossRefGoogle Scholar
Fisher, T.G. Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico. Quaternary Research 59, (2003). 271276.Google Scholar
Fisher, T.G. Abandonment chronology of glacial Lake Agassiz's Northwestern outlet. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 3144.CrossRefGoogle Scholar
Fisher, T.G., Waterson, N., Lowell, T.V., and Hadjas, I. Deglacial ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quaternary Science Reviews 28, (2009). 16081624.CrossRefGoogle Scholar
Flower, B.P., and Kennett, J.P. The Younger Dryas cool episode in the Gulf of Mexico. Paleoceanography 5, (1990). 949961.CrossRefGoogle Scholar
Flower, B.P., Hastings, D.W., Hill, H.W., and Quinn, T.M. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico. Geology 32, (2004). 597600.Google Scholar
Galat, D.L., Berry, C.R. Jr., Peters, E.J., and White, R.G. Missouri River Basin. Benke, A.C., and Cushing, C.E. Rivers of North America. (2005). Elsevier Academic Press, London. 727-468 Google Scholar
Hill, H.W., Flower, B.P., Quinn, T.M., Hollander, D.J., and Guilderson, T.P. Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation. Paleoceanography 21, (2006). PA 1006 Google Scholar
Kennett, J.P., and Shackleton, N.J. Laurentide Ice Sheet meltwater recorded in Gulf of Mexico deep-sea cores. Science 188, (1975). 147150.Google Scholar
Kennett, J.P., Elmstrom, K., and Penrose, N. The last deglaciation in Orca Basin, Gulf of Mexico: high-resolution planktonic foraminiferal changes. Palaeogeography, Palaeoclimatology, Palaeoecology 50, (1985). 189216.Google Scholar
Kısakürek, B., Eisenhauer, A., Böhm, F., Garbe-Schönberg, D., and Erez, J. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters 273, (2008). 260269.CrossRefGoogle Scholar
Klas, M., (1986). Late Quaternary diatoms and clay mineralogy from Orca Basin, Gulf of Mexico. Master's thesis, Newark, New Jersey, Rutgers University., 237 pGoogle Scholar
Knox, J.C. Late Quaternary Upper Mississippi River alluvial episodes and their significance to the Lower Mississippi River system. Engineering Geology 45, (1996). 63285.Google Scholar
Leventer, A., Williams, D.F., and Kennett, J.P. Dynamics of the Laurentide ice sheet during the last deglaciation: evidence from the Gulf of Mexico. Earth and Planetary Science Letters 59, (1982). 1117.Google Scholar
Leventer, A., Williams, D.F., and Kennett, J.P. Relationships between anoxia, glacial meltwater and microfossil preservation in the Orca Basin, Gulf of Mexico. Marine Geology 53, (1983). 2340.CrossRefGoogle Scholar
Manabe, S., and Stouffer, R.J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, (1995). 165167.Google Scholar
Manabe, S., and Stouffer, R.J. Coupled ocean–atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanography 12, (1997). 321336.CrossRefGoogle Scholar
Marchitto, T.M., and Wei, K.-Y. History of Laurentide meltwater flow to the Gulf of Mexico during the last deglaciation, as revealed by reworked calcareous nannofossils. Geology 23, (1995). 779782.2.3.CO;2>CrossRefGoogle Scholar
Meckler, A.N., Schubert, C.J., Hochuli, P.A., Plessen, B., Birgel, D., Flower, B.P., Hinrichs, K.-U., and Haug, G.H. Glacial to Holocene terrigenous organic matter input to sediments from Orca Basin, Gulf of Mexico — a combined optical and biomarker approach. Earth and Planetary Science Letters 272, (2008). 251263.Google Scholar
Mickelson, D.M., and Colgan, P.M. The southern Laurentide Ice Sheet. Development in Quaternary Science 1571-0866 1, (2003). Google Scholar
Montero-Serrano, J.C., Bout-Roumazeilles, V., Tribovillard, N., Sionneau, T., Riboulleau, A., Bory, A., and Flower, B.P. Sedimentary evidence of deglacial megafloods in the northern Gulf of Mexico (Pigmy Basin). Quaternary Science Reviews 28, (2009). 33333347.CrossRefGoogle Scholar
Petschick, R. MacDiff 4.2 Manual. MacDiff [Online]. Available from World Wide Web: http://www.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/RainerE.html (2000). [Revised 2001-05-17] Google Scholar
Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, (1995). 145149.CrossRefGoogle Scholar
Rayburn, J.A., and Teller, J.T. Isostatic rebound in the northwestern part of the Lake Agassiz basin: isobase changes and overflow. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 2330.CrossRefGoogle Scholar
Shokes, B., Presley, B.J., Trabant, P.K., and Reid, D.F. Anoxic, hypersaline basin in the northern Gulf of Mexico. Science 196, (1977). 14431446.Google Scholar
Simms, A.R., Lambeck, K., Purcell, A., Anderson, J.B., and Rodriguez, A.B. Sea-level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting history of the Laurentide Ice Sheet. Quaternary Science Reviews 26, (2007). 920940.CrossRefGoogle Scholar
Sionneau, T., (2008). Transferts Continent–Océan : Enregistrement du dernier cycle climatique par les sédiments terrigènes du Golfe du Mexique. PhD thesis, Université Lille 1, 322 p.Google Scholar
Sionneau, T., Bout-Roumazeilles, V., Biscaye, P.E., Van Vliet-Lanoe, B., and Bory, A. Clay Mineral distributions in and around Mississippi River watershed and Northern Gulf of Mexico: sources and transport patterns. Quaternary Science Reviews 27, (2008). 17401751.Google Scholar
Stanford, J.D., Rohling, E.J., Hunter, S.E., Roberts, A.P., Rasmussen, S.O., Bard, E., McManus, J., and Fairbanks, R.G. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21, (2006). PA4103 CrossRefGoogle Scholar
Tarasov, L., and Peltier, W.R. A calibrated deglacial drainage chronology for the North American continent: evidence of an Arctic trigger for the Younger Dryas. Quaternary Science Reviews 25, (2006). 659688.Google Scholar
Teller, J.T. Volume and routing of late-glacial runoff from the southern Laurentide Ice Sheet. Quaternary Research 34, (1990). 1223.CrossRefGoogle Scholar
Teller, J.T. History and drainage of large ice-dammed lakes along the Laurentide Ice Sheet. Quaternary International 28, (1995). 8392.CrossRefGoogle Scholar
Teller, J.T., Leverington, D.W., and Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, (2002). 879887.Google Scholar
Teller, J.T., Boyd, M., Yang, Z., Kor, P.S.G., and Fard, A.M. Alternative routing of Lake Agassiz overflow during the Younger Dryas: new dates, paleotopography, and a re-evaluation. Quaternary Science Reviews 24, (2005). 18901905.CrossRefGoogle Scholar
Thiry, M. Paleoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews 49, (2000). 201221.CrossRefGoogle Scholar
Thiry, M., Simon-Coinçon, R., and Schmitt, J.-M. Paléoaltérations kaoliniques: signification climatique et signature dans la colonne sédimentaire. Comptes Rendus de l'Académie des Sciences Paris 329, (1999). 853863. Série IIa Google Scholar
Thorleifson, L.H. Review of Lake Agassiz history. Teller, J.T., Thorleifson, L.H., Matile, G., and Brisbin, W. Sedimentology, Geomorphology, and History of the Central Lake Agassiz basin. Field Trip Guidebook B2 (1996). Geological Association of Canada, 5584.Google Scholar
Toledo, F.A.L., Costa, K.B., and Pivel, M.A.G. Salinity changes in the western tropical South Atlantic during the last 30 kyr. Global and Planetary Change 57, (2007). 383395.CrossRefGoogle Scholar
Tompkins, R.E., and Shephard, L.E. Orca Basin: depositional processes, geotechnical properties and clay mineralogy of Holocene sediments within an anoxic hypersaline basin, northwest Gulf of Mexico. Marine Geology 33, (1979). 221238.CrossRefGoogle Scholar
Trentesaux, A., Recourt, P., Bout-Roumazeilles, V., and Tribovillard, N. Carbonate grain-size distribution in hemipelagic sediments from a laser particle sizer. Journal of Sedimentary Research 71, 5 (2001). 858862.Google Scholar
Tribovillard, N., Bout-Roumazeilles, V., Algeo, T.J., Lyons, T., Sionneau, T., Montero-Serrano, J.C., Riboulleau, A., and Baudin, F. Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology 254, (2008). 6272.CrossRefGoogle Scholar
Tribovillard, N., Bout-Roumazeilles, V., Sionneau, T., Montero-Serrano, J.C., Riboulleau, A., and Baudin, F. Does a strong pycnocline impact organic-matter preservation and accumulation in an anoxic setting? The case of the Orca Basin, Gulf of Mexico. Comptes Rendus Geosciences 341, (2009). 19.CrossRefGoogle Scholar
Tripsanas, E.K., Bryant, W.R., Slowey, N.C., Bouma, A.H., Karageorgis, A.P., and Berti, D. Sedimentological history of Bryant Canyon area, northwest Gulf of Mexico, during the last 135 kyr (Marine Isotope Stages 1–6): a proxy record of Mississippi River discharge. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 137161.Google Scholar
Vidal, L., Labeyrie, L., Cortijo, E., Arnold, M., Duplessy, J.C., Michel, E., Becqué, S., and van Weering, T.C.E. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth and Planetary Science Letters 146, (1997). 1327.Google Scholar
Weldeab, S., Schneider, R.R., and Kölling, M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth and Planetary Science Letters 241, (2006). 699706.CrossRefGoogle Scholar
White, D., Johnston, K., and Miller, M. Ohio River Basin. Benke, A.C., and Cushing, C.E. Rivers of North America. (2005). Elsevier Academic Press, London. 375412.Google Scholar
Williams, D.F., and Kohl, B. Isotope chronostratigraphy and carbonate record for quaternary site-619, Pygmy Basin, Louisiana continental-slope. Initial Reports of the Deep Sea Drilling Project 96, (1986). 671676.Google Scholar