Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T15:12:23.811Z Has data issue: false hasContentIssue false

Promise and pitfalls for characterizing and correlating the zeolitically altered tephra of the Pleistocene Peninj Group, Tanzania

Published online by Cambridge University Press:  20 January 2017

Lindsay J. McHenry*
Affiliation:
Department of Geosciences, University of Wisconsin- Milwaukee, 3209 North Maryland Ave., Milwaukee, WI 53211, United States
Luis Luque
Affiliation:
Fundación Dinópolis, Teruel, Spain
José Ángel Gómez
Affiliation:
Agencia Estatal de Meteorología, Valladolid, Spain
Fernando Diez-Martín
Affiliation:
Departamento de Prehistoria y Arqueología, Universidad de Valladolid, Spain
*
Corresponding author. Fax: + 1 414 229 5452.

Abstract

The Pleistocene Humbu and Moinik formations of the Peninj Group in northern Tanzania preserve an important archaeological and paleontological record, in addition to a record of local volcanism in the form of tephra and lavas. Samples of the major Humbu and Moinik formations' basaltic and trachytic tephra were collected and characterized using phenocryst composition and both primary and authigenic mineral assemblage, since the volcanic glass was completely altered to zeolite. Some tephra are distinguishable solely using phenocrysts, but some are too similar in mineral composition or too poor in phenocrysts to definitively “fingerprint” without glass. Titanomagnetite phenocrysts were mostly altered; characterization was thus limited to feldspar, augite, and hornblende compositions for most tephra. Phenocryst compositions were compared to Olduvai tephra compositions to see if any regional tephra could be identified that could help correlate the sites. Augite or hornblende composition rules out potential correlations of Olduvai Bed I Tuff IF and the Bed II Bird Print Tuff or Tuff IID to otherwise similar Peninj Group tephra. Despite their overlap in age and locations at less than ~ 80 km from the Ngorongoro Volcanic Highlands, Peninj and Olduvai have different tephra records, which limits the possibilities for establishing a regional tephrostratigraphic framework.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behrensmeyer, A.K., Potts, R., Deino, A., and Ditchfield, P. Olorgesailie, Kenya: a million years in the life of a rift basin. Renaut, R.W., and Ashley, G.A. Sedimentation in Continental Rifts. SEPM Special Publication No. 73 (2002). SEPM, Tulsa. 97106.Google Scholar
Curtis, G.H. Notes on some Miocene to Pleistcene potassium/argon result. Bishop, W.W., and Miller, J.A. Calibration of Hominoid Evolution. (1967). Scottish Academic Press, Edinburgh. 367 Google Scholar
Dawson, J.B., (2008). The Gregory Rift Valley and Neogene-Recent Volcanoes in Northern Tanzania. Geological Society, London., Memoirs 33. The Geological Society, London.Google Scholar
Deino, A.L., Domínguez-Rodrigo, M., and Luque, L. 40Ar/39Ar dating of the Pleistocene Peninj Group, Lake Natron, Tanzania. Eos, Transactions, American Geophysical Union 87, 52 (2006). (Fall Meeting Supplement, Abstract V53C-1771) Google Scholar
Deino, A.L., and Potts, R. Single-crystal 40Ar/39Ar dating of the Olorgesailie Formation, southern Kenya rift. Journal of Geophysical Research 95, (1990). 84538470.Google Scholar
Denys, C. Micromammals from the west Natron Pleistocene deposits (Tanzania). Biostratigraphy and paleoecology. Sciences Geologiques (Bulletin) Strasbourg 40, (1987). 185201.Google Scholar
Denys, C., Chorowicz, J., and Tiercelin, J.J. Tectonic and environmental control on rodent diversity in the Plio-Pleistocene sediments of the African Rift System. Frostick, L.E. et al. Sedimentation in the African Rifts 25, (1986). Geological Society Special Publication, 363372.Google Scholar
Diez Martín, F., Luque, L., and Domínguez-Rodrigo, M. ST-69: an Acheulean assemblage in the Moinik Formation of Type Section of Peninj (Lake Natron, Tanzania). Domínguez-Rodrigo, M., Alcalá, L., and Luque, L. Peninj. A research project on the archaeology of human origins (1995-2005). (2009). Oxbow, Cambridge. 193206.Google Scholar
Domínguez-Rodrigo, M., Alcalá, L., Luque, L., and Serrallonga, J. Quelques aperçus sur les significations paléoécologique et comportamentale des sites oldowayens anciens et acheuléens du Peninj (Upper Humbu Formation, Ouest du Lac Natron, Tanzanie). Sahnouni, M. Le Paléolithique en Afrique. (2005). ArtCom/Errance, Paris. 129156.Google Scholar
Domínguez-Rodrigo, M., Diez Martín, F., Luque, L., Alcalá, L., and Bushozi, P. The archaeology of the North Escarpment. Domínguez-Rodrigo, M., Alcalá, L., and Luque, L. Peninj. A research project on the archaeology of human origins (1995-2005). (2009). Oxbow, Cambridge. 229258.Google Scholar
Dominguez-Rodrigo, M., Serrallonga, J., Juan-Tresserras, J., Alcalá, L., and Luque, L. Woodworking activities by early humans: a plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution 40, (2001). 289299.Google ScholarPubMed
Domínguez-Rodrigo, M., Serrallonga, J., Luque, L., Diez-Martín, F., Alcalá, L., and Bushozi, P. The Acheulean sites from South Escarpment. Domínguez-Rodrigo, M., Alcalá, L., and Luque, L. Peninj. A research project on the archaeology of human origins (1995-2005). (2009). Oxbow, Cambridge. 207227.Google Scholar
Domínguez-Rodrigo, M., Torre, I., Luque, L., Alcalá, L., Serrallonga, J., and Medina, V. The ST site complex at Peninj, West Lake Natron, Tanzania: implications for early hominid behavioural models. Journal of Archaeological Science 29, (2002). 639665.CrossRefGoogle Scholar
Foster, A., Ebinger, C., Mbede, E., and Rex, D. Tectonic development of the northern sector of the East African Rift System. Journal of the Geological Society, London 154, (1997). 689700.Google Scholar
Gentry, A.W., and Gentry, A. Fossil Bovidae of Olduvai Gorge, Tanzania. Bulletin of the British Museum, Natural History 29, (1978). 289446.Google Scholar
Geraads, D. Le faune des dépôts pléistocènes de l'Ouest du lac Natron (Tanzanie), Interprétation biostratigraphique. Sciences Geologiques (Bulletin) 40, (1987). 167184.Google Scholar
Hay, R.L. Geology of the Olduvai Gorge: a study of sedimentation in a semiarid basin. (1976). University of California Press, Berkeley. 203 pp.Google Scholar
Howell, F.C. Pliocene/Pleistocene hominidae in eastern Africa: absolute and relative ages. Bishop, W.W., and Miller, J.A. Calibration of hominoid evolution. (1972). Scottish Academic Press, Edinburgh. 331368.Google Scholar
Icole, M., Taieb, M., Perinet, G., Manega, P., and Robert, C. Minéralogie des sédiments du groupe Peninj (Lac Natron, Tanzanie). Reconstitution des paléoenvironments lacustres. Sciences Geologiques (Bulletin) 40, (1987). 7182.Google Scholar
Isaac, G.L. The stratigraphy of the Peninj Beds and the provenance of the Natron Australopithecine mandible. Quaternaria 7, (1965). 101130.Google Scholar
Isaac, G.L. The stratigraphy of the Peninj Group- early Middle Pleistocene Formations west of Lake Natron, Tanzania. Bishop, W.W., and Clark, J.D. Background to Evolution in Africa. (1967). University of Chicago Press, Chicago. 119257.Google Scholar
Isaac, G.L. The Olorgesailie Formation: Stratigraphy, tectonics and the palaeogeographic context of the Middle Pleistocene archaeological sites. Bishop, W.W. Geologic background to fossil man: recent research in the Gregory Rift Valley. (1978). East Africa. Scottish Academic Press Ltd., Edinburgh. 173206.Google Scholar
Isaac, G.L., and Curtis, G.H. Age of Early Acheulian industries from the Peninj Group, Tanzania. Nature 249, (1974). 624627.CrossRefGoogle Scholar
Kapitsa, A.P., (1968). Preliminary report of the Soviet East African expedition of the Academy of Sciences of the USSR in 1967. Moscow, . Unpublished. 62 pp.Google Scholar
Leakey, L.S.B., and Leakey, M.D. Recent discoveries of fossil hominids in Tanganyika: at Olduvai and near Lake Natron. Nature 202, (1964). 39.Google Scholar
Luque, L. Los yacimientos Plio-Pleistocenos del Grupo Peninj (Oeste del lago Natron, Tanzania). Geogaceta 18, (1995). 125127.Google Scholar
Luque, L., Alcalá, L., and Domínguez-Rodrigo, M. The Peninj Group: Tectonics, volcanism, and sedimentary paleoenvironments during the lower Pleistocene in the Lake Natron basin. Domínguez-Rodrigo, M., Alcalá, L., and Luque, L. Peninj. A research project on the archaeology of human origins (1995-2005). (2009). Oxbow, Cambridge. 1548.Google Scholar
Luque, L., Alcalá, L., and Domínguez-Rodrigo, M. The Peninj Group in Type Section (Maritanane): an analysis of landscape evolution. Domínguez-Rodrigo, M., Alcalá, L., and Luque, L. Peninj. A research project on the archaeology of human origins (1995-2005). (2009). Oxbow, Cambridge. 4972.Google Scholar
MacIntyre, R.M., Mitchell, J.G., and Dawson, J.B. Age of the fault movements in the Tanzanian sector of the East African rift system. Nature 247, (1974). 354356.CrossRefGoogle Scholar
Manega, P., (1993). Geochronology, geochemistry and isotopic study of the Plio-Pleistocene hominid sites and the Ngorongoro volcanic highland in northern Tanzania. Ph.D. Thesis, University of Colorado, Boulder, Colorado. 382 pp.Google Scholar
McHenry, L.J. Phenocryst composition as a tool for correlating fresh and altered tephra, Bed I, Olduvai Gorge, Tanzania. Stratigraphy 2, (2005). 101115.CrossRefGoogle Scholar
McHenry, L.J. Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-basin lacustrine environment: Case study Olduvai Gorge, Tanzania. Chemical Geology 265, (2009). 540552.Google Scholar
McHenry, L.J., submitted for publication. A revised stratigraphic framework for Olduvai Gorge Bed I based on tuff geochemistry.Google Scholar
McHenry, L.J., Mollel, G.M., Swisher, C.C. III Compositional and textural correlations between Olduvai Gorge Bed I tephra and volcanic sources in the Ngorongoro Volcanic Highlands, Tanzania. Quaternary International 178, (2008). 306319.Google Scholar
Mollel, G.F., (2007). Petrochemistry and Geochronology of Ngorongoro Volcanic Highland Complex (NVHC) and its relationship to Laetoli and Olduvai Gorge, Tanzania. Ph.D. thesis, Rutgers University, New Jersey., 232 p.Google Scholar
Mollel, G.F., Swisher, C.C. III, McHenry, L.J., Feigenson, M.D., and Carr, M.J. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania. Journal of African Earth Sciences 54, (2009). 127143.Google Scholar
Ndessokia, P.N.S. Paleofauna composition and paleoenvironment of Peninj (Marita-Nane site) in West Lake Natron basin, northern Tanzania. Sciences Geologiques (Bulletin) 40, (1987). 203208.Google Scholar
Tamrat, E., Thouveny, N., Taïeb, M., and Opdyke, N. Revised magnetostratigraphy of the Plio-Pleistocene sedimentary sequence of the Olduvai Formation (Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology 114, (1995). 273283.CrossRefGoogle Scholar
Thouveny, N., and Taieb, M. Preliminary magnetostratigraphic record of Pleistocene deposits, Lake Natron Basin, Tanzania. Frostick, L.E. et al. Sedimentation in the African Rifts 25, (1986). Geological Society Special Publication, 331336.Google Scholar
Thouveny, N., and Taieb, M. Etude paleomagnetique des formations du Plio-Pleistocene de la region de Peninj (Ouest du lac Natron, Tanzanie). Sciences Geologiques (Bulletin) 40, (1987). 5062.Google Scholar
Torre, I., Mora, R., Domínguez-Rodrigo, M., Luque, L., and Alcalá, L. The Oldowan industry of Peninj and its bearing on the reconstruction of the technological skills of Lower Pleistocene hominids. Journal of Human Evolution 44, (2003). 203224.Google Scholar
Walter, R.C., Manega, P.C., and Hay, R.L. Tephrochronology of Bed I, Olduvai Gorge: an application of the laser-fusion 40Ar/39Ar dating to calibrating biological and climatic change. Quaternary International 13–14, (1992). 3746.Google Scholar
Wood, B., and Constantino, P. Paranthropus boisei: fifty years of evidence and analysis. Yearbook of Physical Anthropology 50, (2007). 106132.CrossRefGoogle Scholar
Supplementary material: PDF

McHenry et al. Supplementary Material

Supplementary Material

Download McHenry et al. Supplementary Material(PDF)
PDF 64.1 KB