Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T22:56:41.907Z Has data issue: false hasContentIssue false

Probability Density Functions as Botanical-Climatological Transfer Functions for Climate Reconstruction

Published online by Cambridge University Press:  20 January 2017

Norbert Kühl*
Affiliation:
Paleontological Institute of the University of Bonn, Nussallee 8, Bonn, 53115, Germany
Christoph Gebhardt
Affiliation:
Meteorological Institute of the University of Bonn, Auf dem Hügel 20, Bonn, 53121, Germany
Thomas Litt
Affiliation:
Paleontological Institute of the University of Bonn, Nussallee 8, Bonn, 53115, Germany
Andreas Hense
Affiliation:
Meteorological Institute of the University of Bonn, Auf dem Hügel 20, Bonn, 53121, Germany
*
1To whom correspondence should be addressed. Fax: +49/228/73-3509. E-mail: [email protected].

Abstract

We present a new procedure, the pdf method (pdf=probability density function), for reconstructing Quaternary climate utilizing botanical data. The procedure includes the advantages of the indicator species method by considering the fossil and modern presence and absence of taxa rather than their frequencies, thus avoiding the need for modern analog plant communities. Overcoming the problematic use of absolute limits to describe climate response ranges is the main progress of the pdf method in comparison to the indicator species method. This advantage results from estimating probability density functions (pdfs) for monthly mean January and July temperature conditional on the present day occurrence of single taxa. Gaussian distributions sufficiently approximate pdfs of many, although not all, studied taxa. On the assumption of statistical independence, the procedure calculates a joint pdf as the product of the pdfs of the individual taxa. This algorithm weights each taxon according to the extent of its climate response range expressed by its covariance structure. We interpret the maximum of the resulting pdf as the most likely climate and its confidence interval as the uncertainty range. To avoid an artificial reduction of uncertainty arising from the use of numerous similar pdfs, a preselection method is proposed based on the Mahalanobis distance between pdfs. The pdf method was applied to the Carpinus phase of a profile from Gröbern, Germany, that spans the last interglaciation (Eemian). The reconstructed most probable January and July temperatures of about 0.0°C and 18.4°C barely differ from the modern values of −0.5°C and 18.3°C.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, B., and Tauber, H. Eemian climate and pollen. Nature 376, (1994). 27 28.Google Scholar
Aalbersberg, G., and Litt, T. Multiproxy climate reconstructions for the Eemian and Early Weichselian. Journal of Quaternary Science 13, (1998). 367 390.3.0.CO;2-I>CrossRefGoogle Scholar
Atkinson, T.C., Briffa, K.R., and Coope, G.R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, (1987). 587 592.Google Scholar
Bartlein, P.J., Webb, T. III, and Fleri, E. Holocene climatic change in the northern Midwest: Pollen-derived estimates. Quaternary Research 22, (1984). 361 374.CrossRefGoogle Scholar
Birks, H.H. Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography 27, (2000). 31 35.Google Scholar
Birks, H.J.B., and Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis. (1985). Academic Press, London.Google Scholar
Bush, M.B. Deriving response matrices from Central American modern pollen rain. Quaternary Research 54, (2000). 132 143.CrossRefGoogle Scholar
Cheddadi, R., Yu, G., Guiot, J., Harrison, S.P., and Prentice, I.C. The climate of Europe 6000 years ago. Climate Dynamics 13, (1997). 1 9.Google Scholar
Cheddadi, R., Mamakowa, K., Guiot, J., De Beaulieu, J.-L., Reille, J.-L., Reille, M., Andrieu, V., Granoszewski, W., and Peyron, O. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143, (1998). 73 86.Google Scholar
Ellenberg, H. Vegetation Mitteleuropas mit den Alpen. (1996). Ulmer, Stuttgart.Google Scholar
Field, M.H., Huntley, B., and Müller, H. Eemian climate fluctuations observed in a European pollen record. Nature 371, (1994). 779 783.Google Scholar
Frenzel, B. Die Klimaschwankungen des Eiszeitalters. (1967). Vieweg, Braunschweig.Google Scholar
Frenzel, B. Das Klima des Letzten Interglazials in Europa. Frenzel, B. Klimageschichtliche Probleme der letzten 130 000 Jahre. (1991). Fischer, Stuttgart. 51 78.Google Scholar
Grichuk, V.P. An attempt to reconstruct certain elements of the climate of the Northern Hemisphere in the Atlantic Period of the Holocene. Neishtadt, M.I. The Holocen. (1969). Izd-vo Nauka, Moskow. 41 57.Google Scholar
Grichuk, V. P., Gurtovaya, Ye. Ye., Zelikson, E. M., and Borisova, O. K. (1984). Methods and results of late pleistocene paleoclimatic reconstructions.. In Late Quaternary Environments of the Soviet UnionA. A. Velichko, Ed., pp. 251260. Univ. of Minnesota Press, Minneapolis.Google Scholar
Guiot, J. Late Quaternary climatic change in France estimated from multivariate pollen time series. Quaternary Research 28, (1987). 100 118.Google Scholar
Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 49 69.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.-L., and Reille, M. A 140,000-year climatic reconstruction from two European pollen records. Nature 338, (1989). 309 313.Google Scholar
Hintikka, V. Über das Grossklima einiger Pflanzenareale in zwei Klimakoordinatensystemen dargestellt. Annales botanici Societatis Zoologicae-Botanicae Fennicae Vanamo 34, (1963). 1 64.Google Scholar
Hultén, E. The Circumpolar Plants, Vol. I. (1964). Almqvist & Wiksell, Stockholm.Google Scholar
Hultén, E. The Circumpolar Plants, Vol. II. (1971). Almqvist & Wiksell, Stockholm.Google Scholar
Huntley, B., and Prentice, J.C. July temperatures in Europe from pollen data, 6000 years before present. Science 241, (1988). 687 690.Google Scholar
Imbrie, J., and Kipp, N.G. A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene caribbean core. Turekian, K.K. The Late Cenozoic Glacial Ages. (1971). Yale University Press, New Haven. 71 181.Google Scholar
Imbrie, J., Webb, T. III Transfer functions: Calibrating micropaleontological data in climatic terms. Berger, A. Climate Variations and Variability: Facts and Theories. (1981). Reidel, Dordrecht. 125 134.Google Scholar
Iversen, J. Viscum, Hedera and Ilex as climate indicators. Geologiska Foereningens i Stockholm foerhandlingar 66, (1944). 463 483.Google Scholar
Jackson, S.T., Overpeck, J.T., Webb, T. III, Keattch, S.E., and Anderson, K.H. Mapped plant-macrofossil and pollen records of late quaternary vegetation change in eastern North America. Quaternary Science Reviews 16, (1997). 1 70.Google Scholar
Jackson, S.T., Webb, R.S., Anderson, K.H., Overpeck, J.T., Webb, T. III, Williams, J.W., and Hansen, B.C.S. Vegetation and environment in eastern North America during the last glacial maximum. Quaternary Science Reviews 19, (2000). 489 508.Google Scholar
Jalas, J., and Suominen, J. Atlas Florae Europaeae. Distribution of Vascular Plants in Europe. 2. Gymnospermae. (1973). Suomalaisen Kirjallisuuden Kirjapaino Oy, Helsinki.Google Scholar
Jalas, J, and Suominen, J. 1976, Atlas Florae Europaeae. Distribution of vascular Plants in Europe. 3. Salicaceae to Balanophoraceae, Suomalaisen Kirjallisuuden Kirjapaino Oy, Helsinki.Google Scholar
Janssen, C. R. (1973). Local and regional pollen deposition.. In Quaternary Plant EcologyH. J. B. Birks and R. G. West, Eds., pp. 3142. Blackwell Sci. Oxford.Google Scholar
Jeffree, E.P., and Jeffree, C.E. Temperature and the biogeographical distributions of species. Functional Ecology 8, (1994). 640 650.Google Scholar
Johnson, W.C., Webb, T. III The role of blue Jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. Journal of Biogeography 16, (1989). 561 571.Google Scholar
Klimanov, V. A. (1984). Paleoclimatic reconstructions based on the information statistical method.. In Late Quaternary Environments of the Soviet UnionA. A. Velichko, Ed., pp. 297303. Longman, London.Google Scholar
Königsson, L.-K. The recent pollen rain in some alpine and sub-alpine environments in the southern parts of the Scandinavian mountains and its bearing on investigations of Holocene forest-line shifts. Acta Botanica Fennica 144, (1992). 19 34.Google Scholar
Litt, T. Paläoökologie, Paläobotanik und Stratigraphie des Jungquartärs im nordmitteleuropäischen Tiefland. Dissertationes Botanicae 227, (1994). Google Scholar
Litt, T., Junge, F.W., and Böttger, T. Climate during the Eemian in north-central Europe—A critical review of the paleobotanical and stable isotope data from central Germany. Vegetation History and Archaeobotany 5, (1996). 247 256.Google Scholar
Mahalanobis, P.C. On the generalized distance in statistics. Proceedings of the National Institute of Sciences of India 12, (1936). 49 55.Google Scholar
Mai, D.H. Die Flora des Interglazials von Gröbern (Kreis Graifenhainichen). Altenburger naturwissenschaftliche Forschungen 5, (1990). 106 115.Google Scholar
Menke, B., and Tynni, R. Das Eeminterglazial und das Weichsel-frühglazial von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozän–Gliederung. Geologisches Jahrbuch A 76, (1984). 3 120.Google Scholar
Meusel, H., and Jäger, E. Vergleichende Chorologie der zentraleuropäischen Flora–Karten–. Band III. (1992). Fischer, Jena.Google Scholar
Meusel, H., Jäger, E., and Weinert, E. Vergleichende Chorologie der zentraleuropäischen Flora–Karten–. Band I. (1964). Fischer, Jena.Google Scholar
Meusel, H., Jäger, E., Rauschert, S., and Weinert, E. Vergleichende Chorologie der zentraleuropäischen Flora–Karten–. Band II. (1978). Fischer, Jena.Google Scholar
New, M.G., Hulme, M., and Jones, P.D. Representing 20th century space–time climate variability. I: Development of a 1961–1990 mean monthly terrestrial climatology. Journal of Climate 12, (1999). 829 856.Google Scholar
NGDC, (1996). Digital terrain data. Available online, http://www.ngdc.noaa.gov/seg/topo/topo.shtml.Google Scholar
Overpeck, J.T., Webb, T. III, and Prentice, I.C. Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients and the Method of Modern Analogs. Quaternary Research 23, (1985). 87 108.Google Scholar
Pons, A., Guiot, J., de Beaulieu, L., and Reille, M. Recent Contributions to the Climatology of the last Glacial-Interglacial Cycle based on French Pollen Sequences. Quaternary Science Reviews 11, (1992). 439 448.Google Scholar
Prentice, C., Bartlein, P.J., Webb, T. III Vegetation and climate change in Eastern North America since the last glacial maximum. Ecology 72, (1991). 2038 2056.Google Scholar
Pross, J., Klotz, S., and Mosbrugger, V. Reconstructing palaeotemperatures for the Early and Middle Pleistocene using the mutual climatic range method based on plant fossils. Quaternary Science Reviews 19, (2000). 1785 1799.Google Scholar
Rogers, D.J., and Randolph, S.E. The global spread of malaria in a future, warmer world. Science 289, (2000). 1763 1766.Google Scholar
Schölzel, C.A., Hense, A., Hübl, P., Kühl, N., and Litt, T. Digitization and geo-referencing of botanical distribution maps. Journal of Biogeography 29, (2002). 851 856.Google Scholar
Silverman, B.W. Density Estimation for Statistics and Data Analysis. (1986). Chapman and Hall, New York.Google Scholar
Sinka, K.J., and Atkinson, T.C. A mutual climatic range method for reconstructing palaeoclimate from plant remains. Journal of the Geological Society 156, (1999). 381 396.Google Scholar
Suyama, Y., Kawamuro, K., Kinoshita, I., Yoshimura, K., Tsumura, Y., and Takahara, H. DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes & Genetic Systems 71, (1996). 145 149.Google Scholar
Tauber, H. Differential pollen dispersal and interpretation of pollen diagrams. Danmarks geologiske Undersøgelse 11, (1965). 1 69.Google Scholar
Thompson, R.S., Anderson, K.H., and Bartlein, P.J. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. U.S. Geological Survey Professional Paper (2000). CrossRefGoogle Scholar
von Post, L. Postarktiska klimattyper i södra Sverige. Geologiska Foereningens i Stockholm foerhandlingar 42, (1920). Google Scholar
Walter, H., and Straka, H. Arealkunde. Floristisch–historische Geobotanik. (Einführung in die Phytologie III, 2). (1970). Ulmer, Stuttgart.Google Scholar
Webb, T. III Is vegetation in equilibrium with climate?. Vegetation 67, (1986). 75 91.Google Scholar
Webb, T. III, and Bryson, R.A. Late- and post-glacial climatic change in the northern Midwest, USA: Quantitative estimates derived from fossil pollen spectra by multivariate statistical analysis. Quaternary Research 2, (1972). 70 115.Google Scholar
Webb, T. III, and Clark, D.R. Calibrating micropalaeontological data in climatic terms: A critical review. Annals of the New York Academy of Sciences 288, (1977). 93 118.Google Scholar
Williams, J.W., Shuman, B.N., Webb, T. III Dissimilarity analysis of late-Quaternary vegetation and climate in eastern North America. Ecology 82, (2001). 3346 3362.Google Scholar
Woodward, F.I., and Williams, B.G. Climate and plant distribution at global and local scales. Vegetation 69, (1987). 189 197.Google Scholar
Zagwijn, W.H. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15, (1996). 451 469.Google Scholar