Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:41:53.281Z Has data issue: false hasContentIssue false

Preliminary results from U–Th dating of glacial–interglacial deposition cycles in a silica speleothem from Venezuela

Published online by Cambridge University Press:  20 January 2017

J. Lundberg*
Affiliation:
Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
C. Brewer-Carias
Affiliation:
Sociedad Venezolana de Ciencias Naturales, Edif Torre America PH-B, Ave. Venezuela, Bello Monte Caracas, Venezuela
D.A. McFarlane
Affiliation:
W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711, USA
*
Corresponding author. Fax: +1 613 520 4301. E-mail addresses:[email protected] (J. Lundberg), [email protected] (C. Brewer-Carias), [email protected] (D.A. McFarlane).

Abstract

Recent explorations in Cueva Charles Brewer, a large cave in a sandstone tepui, SE Venezuela, have revealed silica biospeleothems of unprecedented size and diversity. Study of one — a sub-spherical mass of opaline silica — reveals a complex, laminated internal structure consisting of three narrow dark bands alternating with two wider light bands. Uranium–thorium dating has produced 3 stratigraphically correct dates on the light bands from 298 ± 6 (MIS 9) to 390 ± 33 ka (MIS 11). U concentration is only 30–110 ppb. Initial 234U/238U ratios are high and increase over time from 1.8 to 5.3. Growth rate is very low, the fastest, at 0.37 ± 0.23 mm/ka, in MIS 9. Trace element and heavy metal content of the dark bands is distinctly higher than that of the light bands. It is hypothesized that the dark and light bands correlate with drier/glacial and wetter/interglacial periods, respectively, and that this sample probably began to grow in MIS 13. The cave is in a region that straddles a regionally important ecotone: the speleothem isotopic and trace element variations may preserve a useful paleoclimatic signal. This is the first published suite of U–Th dates from a single silica speleothem and the longest Quaternary record for this region.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubrecht, R., Brewer-Carías, C., Šmída, B., Audy, M., and Kováčik, L. Anatomy of biologically mediated opal speleothems in the world's largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sed. Geol. 203, (2008). 181195.Google Scholar
Aubrecht, R., Lánczos, T., Šmída, B., Brewer-Carías, C., Mayoral, F., Schlögl, J., Audy, M., Vlcek, L., and Gregor, M. Venezuelan sandstone caves: a new view on their genesis, hydrogeology and speleothems. Geologia Croatica 61, 2–3 (2008). 345362.Google Scholar
Baker, A., Genty, D., and Smart, P.L. High resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths. Geology 26, (1998). 903906.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., and Lancelot, Y. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, (1994). 91108.CrossRefGoogle Scholar
Brewer-Carías, C. Las Espeleotemas de la Cueva Charles Brewer. Michelangeli, Armando Tepuy, Colosos de la Tierra. (2005). 310327. Fundación Terramar, Altolitho, Caracas. 344 ppGoogle Scholar
Briceño, H.O., and Schubert, C. Geomorphology of the Gran Sabana, Guayana Shield, southeastern Venezuela. Geomorphology 3, (1990). 125141.Google Scholar
Burne, R.V., and Moore, L.S. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2, (1987). 241254.Google Scholar
Chacón, A., Mesa, J., and Mayoral, F. La Cueva Charles Brewer. Revista FACES, Caracas 3, 13 (2006). 2853.Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, (2000). 1733.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Karmann, I., Sharp, W.D., Vulle, M., Cardaso, A.O., Ferrari, J.A., Dias, P.L.S., Vlana, O. Jr. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, (2005). 6365.Google Scholar
Curtis, J.H., Brenner, M., and Hodell, D.A. Climate change in the Lake Valencia Basin, Venezuela, 12600 yr BP to present. Holocene 9, (1999). 609619.Google Scholar
Desjardins, T., Carneiro Filho, A., Mariotti, A., Chauvel, A., and Girardin, C. Changes in the forest-savanna boundary in Brazilian Amazonia during the Holocene revealed by stable isotopes of soil organic carbon. Oecologia 108, (1996). 749756.Google Scholar
Edmond, J.M., Palmer, M.R., Measures, C.I., Grant, B., and Stallard, R.F. The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochim. Cosmochim. Acta 59, (1995). 33013325.Google Scholar
Gibbs, A.K., and Barron, C.N. The geology of the Guyana Shield. (1993). Oxford, Clarendon Press. 245 ppGoogle Scholar
Hill, C.A., and Forti, P. Cave minerals of the world. (1997). National Speleological Society, Huntsville, Alabama. 238 ppGoogle Scholar
Ivanovich, M., Latham, A.G., and Ku, T.-I. Uranium-series disequilibrium applications in geochronology. Ivanovich, M., and Harmon, R.S. Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences, 2nd edition. (1992). Clarendon Press, Oxford. 6289.Google Scholar
Lánczos, T., Aubrecht, R., Schlögl, J., Šmída, B., and Brewer-Carías, C. Preliminary results of the Tepuy 2007 expedition to the Venezuelan table mountains—water geochemistry and its relation to the genesis of the quartzite karst. Fľaková, R., and Šenišová, Z. Proceedings of the Hydrogeochémia 2007 conference, 7th–8th June 2007, Bratislava. (2007). Slovak Association of Hydrogeologists, Bratislava. 136141.Google Scholar
Musgrove, M., Banner, J.L., Mack, L.E., Combs, D.M., James, E.W., and Cheng, H. Geochronology of late Pleistocene to Holocene speleothems from central Texas; implications for regional paleoclimate. Bull. Geol. Soc. Am. 113, (2001). 15321543.Google Scholar
Pennington, R.T., Credo, D.E., and Pendry, C.A. Neotropical seasonally dry forests and Quaternary vegetation changes. J. Biogeogr. 27, (2000). 261273.Google Scholar
Piccini, L., and Mecchia, M. Solution weathering rate and origin of karst landforms and caves in the quartzite of Auyan-tepui (Gran Sabana, Venezuela). Geomorphology 106, (2009). 1525.Google Scholar
Pitty, A.F. Geography and soil properties. American Geographical Society. (1979). 287 Google Scholar
Potter, P.E. The Mesozoic and Cenozoic drainage of South America: a natural history. J. S. Am. Earth Sci. 10, (1997). 331344.Google Scholar
Raymo, M.E., and Ruddiman, W.F. DSDP Site 607 Isotope Data and Age Models, Data Contribution Series #2004-010. (2004). NOAA/NGDC Paleoclimatology Program, Boulder, CO, USA.Google Scholar
Rull, V. Biogeography of the ‘Lost World’: a palaeoecological perspective. Earth-Sci. Rev. 67, (2004). 125137.Google Scholar
Rull, V. Vegetation and environmental constancy in the Neotropical Guayana Highlands during the last 6000 years?. Rev. Palaeobot. Palynol. 135, (2005). 205222.Google Scholar
Rull, V. Biotic diversification in the Guyana Highlands: a proposal. J. Biogeogr. 32, (2005). 921927.Google Scholar
Santos, J.O.S., Potter, P.E., Reis, N.J., Hartmann, L.A., Fletcher, I.R., and McNaughton, N.J. Age, source, and regional stratigraphy of the Roraima Supergroup and Roraima-like outliers in northern South America based on U–Pb geochronology. Geol. Soc. Am. Bull. 115, (2003). 331348.Google Scholar
Schubert, C., and Fritz, P. Radiocarbon ages of peat, Guayana Highlands (Venezuela). Naturwissenschaften 72, (1985). 427429.Google Scholar
Šmída, B., Audy, M., and Mayoral, F. Cueva Charles Brewer: largest quartzite cave in the world. NSS News. (2005). 1331. January 2005 Google Scholar
Smith, C.L., Baker, A., Fairchild, I.J., Frisia, S., and Borsato, A. Reconstructing hemispheric-scale climates from multiple stalagmite records. Int. J. Climatol. 26, (2006). 14171424.Google Scholar
Shackleton, N.J., Berger, A., and Peltier, W.R. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinburgh, Earth Sci. 81, (1990). 251261.Google Scholar
Shubert, C., Fritz, P., and Aravena, R. Late quaternary paleoenvironmental studies in the Gran Sabana (Venezuelan Guyana Shield). Quatern. Int. 21, (1994). 8190.Google Scholar
Twidale, C.R., and Romani, J.R.V. Landforms and geology of granite terrains. Taylor and Francis. (2005). 351 Google Scholar
Urbani, F., Compère, P., and Willems, L. Opal-a Speleothems of Wei-Assipu-Tepui, Roraima Province, Brazil. Boletín de la Sociedad Venezolana de Espeleología 39, (2005). 2126.Google Scholar
Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C.J., Frumkin, A., Karufam, A., and Matthews, A. Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quatern. Res. 59, (2003). 182193.Google Scholar
Van der Hammen, T., and Hooghiemstra, H. Neogene and Quaternary history of vegetation, climate and plant diversity in Amazonia. Quatern. Sci. Rev. 19, (2000). 725742.Google Scholar
Willems, L., Compere, P., Hatert, F., Puclet, A., Vicat, J.P., Ek, C., and Boulvain, F. Karst in granitic rocks, South Cameron: cave genesis and silica and taranakite speleothems. Terra Nova 14, (2002). 355362.Google Scholar
White, W.B., Jefferson, G.L., and Haman, J.F. Quartzite karst in Southeastern Venezuela. Int. J. Speleol. 2, (1967). 309314.Google Scholar
Wray, R.A.L. Opal and chalcedony speleothems on quartz sandstones in the Sydney region, southeastern Australia. Aust. J. Earth Sci. 46, (1999). 623632.Google Scholar