Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T12:59:40.338Z Has data issue: false hasContentIssue false

The potential lateral growth of lithalsas

Published online by Cambridge University Press:  20 January 2017

Albert Pissart*
Affiliation:
Department of Geography, University of Liège, Liège, Belgium
Fabrice Calmels
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
Cécile Wastiaux
Affiliation:
Department of Geography, University of Liège, Liège, Belgium
*
Corresponding author at: 29, rue Lavaux, 4130 Esneux, Belgium.

Abstract

The lithalsas in the Hudson Bay region of northern Québec, Canada, are the closest modern analogs of ancient features that collapsed to form conspicuous circular depressions (“viviers”) common in the Hautes-Fagnes, a region in Belgium. Observations made in both regions are complementary and suggest that these mounds formed by frost heaving displacing soil not only upward, as previously assumed, but also laterally. This lateral displacement is consistent with diverse observations and inferences, which include (1) the simple rounded outline, either circular or oval, typical of both active and relic lithalsas; (2) evidence of local lateral extension inferred from exposures of the relic forms; (3) the relative inefficiency of solifluction in accumulating surface material to form the peripheral ramparts of remnant lithalsas due to the very gentle slopes of the mounds; and (4) the dip of ice lenses within a lithalsa in the Hudson Bay region, perhaps indicating that the freezing front dipped outward along its periphery. The growth of segregation ice is the primary driver for the vertical growth and lateral enlargement of a lithalsa.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastin, B., Juvigné, E., Pissart, A., and Thorez, J. Etude d'une coupe dégagée à travers un rempart d'une cicatrice de pingo de la Brackvenn. Annales de la Société géologique de Belgique 97, (1974). 341348.Google Scholar
Calmels, F., (2005). Genèse et structure du pergélisol. Etude des formes périglaciaires de soulèvement au gel au Nunavik (Québec Nordique au Canada). Thèse de doctorat présentée à l'Université de Caen, (France). 169 p.Google Scholar
Calmels, F., and Allard, M. Ice segregation and gas distribution in permafrost using tomodensimetry analysis. Permafrost and Periglacial Processes 15, (2004). 367378.Google Scholar
Calmels, F., and Allard, M. A structural interpretation of the palsa/lithalsa growth mechanism through the use of CT Scanning. Earth Surface Processes and Landforms 33, (2008). 209225.Google Scholar
Calmels, F., Allard, M., and Delisle, G. Development and decay of a lithalsa in Northern Québec: a geomorphological history. Geomorphology 97, (2008). 287299.Google Scholar
Calmels, F., Delisle, G., and Allard, M. Internal structure and the thermal and hydrological regime of a typical lithalsa: significance for permafrost growth and decay. Canadian Journal of Earth Sciences 45, (2008). 3143.Google Scholar
Dash, J.G., FU, H., and Wettlaufer, J.S. The premelting of ice and its environmental consequences. Reports on Progress in Physics 58, 1 (1995). 115167.Google Scholar
Delisle, G., and Allard, M. Numerical simulation of the ground temperature field in a palsa reveals strong influence of convective heat transport by groundwater. Proceedings of the eighth international conference on permafrost, 21-25 July 2003. (2003). Balkema Publishers, Zurich, Switzerland. 181186.Google Scholar
Delisle, G., Allard, M., Fortier, R., Calmels, F., and Larrivée, E. Umiaujaq, Northern Québec : innovative techniques to monitor the decay of a lithalsa in response to climate change. Permafrost and Periglacial processes 14, (2003). 375385.Google Scholar
Eakin, H. M., (1916). The Yukon-Koyukuk region, Alaska.. U.S. Geological Survey Bulletin, 681, 88 p.Google Scholar
Juvigné, E., and Pissart, A. Un sondage sur le plateau des Hautes Fagnes au lieu-dit la Brackvenn. Annales de la Société géologique de Belgique 102, (1979). 277284.Google Scholar
Pissart, A., (1967). Les pingos de l'île Prince Patrick (76°N-120°W). Geographical Bulletin 9, (3), 189-217. Technical translation 1401, made in 1970 by William Barr for the Division of Building Research. National Research Council of Canada, under the title “The pingos of Prince Patrick Island (76°N-120°W)”. Google Scholar
Pissart, A. Les viviers des Hautes Fagnes sont des traces de buttes périglaciaires. Mais s'agissait-il réellement de pingos. Annales de la Société Géologique de Belgique 97, (1974). 359381.Google Scholar
Pissart, A. The remnants of lithalsas of the Hautes Fagnes (Belgium): a summary of present day knowledge. Permafrost and Periglacial Processes 11, 4 (2000). 327355.Google Scholar
Pissart, A. Palsas, lithalsas and remnants of these periglacial mounds. A progress report. Progress in Physical Geography 26, 4 (2002). 605621.Google Scholar
Pissart, A. The remnants of Younger Dryas lithalsas on the Hautes Fagnes Plateau in Belgium and elsewhere in the world. Geomorphology 52, (2003). 538.Google Scholar
Pissart, A. Remnants of lithalsas on the Hautes Fagnes plateau (Belgium) are on weathered quartzitic rocks. Zeitschrift für Geomorphologie 54, 1 (2010). 115.Google Scholar
Pissart, A., and French, H.M. Pingos investigations: North central Banks Island, Canadian Arctic. Canadian Journal of Earth Sciences 13, (1976). 937946.Google Scholar
Pissart, A., and Juvigné, E. Genèse et âge d'une trace de butte périglaciaire (pingo ou palse) de la Konnerzvenn (Hautes Fagnes, Belgique). Annales de la Société géologique de Belgique 103, (1980). 7386.Google Scholar
Pissart, A., and Gangloff, P. Les palses minérales et organiques de la vallée de l'Aveneau, près de Kuujjuaq, Québec subarctique. Géographie physique et Quaternaire 38, 3 (1984). 217228.Google Scholar
Radd, F.J., and Oertel, D.H. Experimental pressure studies of frost-heave mechanisms and the growth-fusion behaviour of ice. Proceeding of the Second International Conference on Permafrost. (1973). North American Contribution, publication National Academy of Science, Washington D.C. Yakutsk, USSR. 377384.Google Scholar
Seppälä, M. Origin of Palsas. Geografiska Annaler 68A, 3 (1986). 141147.Google Scholar
Seppälä, M. Depth of Snow and Frost on a Palsa Mire, Finnish Lapland. Geografiska Annaler. 72A, 2 (1990). 191201.Google Scholar
Washburn, A.L. Geocryology: a survey of periglacial processes and environments. (1979). Edward Arnold, London. 406 pGoogle Scholar
Wastiaux, C., Schumacker, R. (coll. Halleux, L. & Jacqmotte, J.-M.), (2003). Topographie de surface et de subsurface des zones tourbeuses des réserves naturelles domaniales des Hautes-Fagnes.. Rapport de synthèse. Convention C60 entre l'Université de Liège et le Ministère de la Région Wallonne (D.G.R.N.E.), rapport inédit: 52 p. + annexes.Google Scholar
Yershov, E.D. General Geocryology. (1998). Cambridge University Press, U.K, Studies in Polar Research. 580 pGoogle Scholar