Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:03:40.549Z Has data issue: false hasContentIssue false

Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41–42.5°S), Argentina

Published online by Cambridge University Press:  20 January 2017

Cathy Whitlock*
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
Maria Martha Bianchi
Affiliation:
CONICET-Universidad Nacional del Comahue, 8400 San Carlos de Bariloche, Rio Negro, Argentina
Patrick J. Bartlein
Affiliation:
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Vera Markgraf
Affiliation:
INSTAAR, University of Colorado, Boulder, CO 80309, USA
Jennifer Marlon
Affiliation:
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Megan Walsh
Affiliation:
Department of Geography, University of Oregon, Eugene, OR 97403, USA
Neil McCoy
Affiliation:
Department of Geography, University of Oregon, Eugene, OR 97403, USA
*
Corresponding author. Fax: +1 406 994 6910. E-mail address:[email protected] (C. Whitlock).

Abstract

The history of the low-elevation forest and forest-steppe ecotone on the east side of the Andes is revealed in pollen and charcoal records obtained from mid-latitude lakes. Prior to 15,000 cal yr BP, the vegetation was characterized by steppe vegetation with isolated stands of Nothofagus. The climate was generally dry, and the sparse vegetation apparently lacked sufficient fuels to burn extensively. After 15,000 cal yr BP, a mixture of Nothofagus forest and shrubland/steppe developed. Fire activity increased between 13,250 and 11,400 cal yr BP, contemporaneous with a regionally defined cold dry period (Huelmo/Mascardi Cold Reversal). The early-Holocene period was characterized by an open Nothofagus forest/shrubland mosaic, and fire frequency was high in dry sites and low in wet sites; the data suggest a sharp decrease in moisture eastward from the Andes. A shift to a surface-fire regime occurred at 7500 cal yr BP at the wet site and at 4400 cal yr BP at the dry site, preceding the expansion of Austrocedrus by 1000–1500 yr. The spread of Austrocedrus is explained by a shift towards a cooler and wetter climate in the middle and late Holocene. The change to a surface-fire regime is consistent with increased interannual climate variability and the onset or strengthening of ENSO. The present-day mixed forest dominated by Nothofagus and Austrocedrus was established in the last few millennia.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzúa, A.M., Villagran, C., and Moreno, P.I Deglacial and postglacial climate history in east-central Isla Grande de Chiloe, southern Chile (43°S). Quaternary Research 63, (2004). 4959.CrossRefGoogle Scholar
Ariztegui, D., Bianchi, M.M., Masaferro, J., Lafargue, E., and Niessen, F. Interhemispheric synchrony of late-glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. Journal of Quaternary Science 12, (1997). 333338.3.0.CO;2-0>CrossRefGoogle Scholar
Bennett, K.D., and Willis, K.J. Pollen. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators. (2001). Kluwer Academic Publishers, Dordrecht. 532.Google Scholar
Bianchi, M.M. Historia de fuego en Patagonia: Registro de carbón vegetal sedimentario durante el Post-glacial y el Holoceno en el Lago Escondido (41(S-72(W). Revista Cuaternario y Ciencias Ambientales. Publicación Especial vol. 4, (2000). 2329.Google Scholar
Bianchi, M.M, Massaferro, J., Roman, G.R., Amos, A.J., and Lami, A. Late Pleistocene and early Holocene ecological response of Lake El Trebol (Patagonia, Argentina) to environmental changes. Journal of Paleolimnology 22, (1999). 137148.Google Scholar
Gardner, J.J., and Whitlock, C. Charcoal accumulation following a recent fire in the Cascade Range, northwestern USA, and its relevance for fire-history studies. The Holocene 11, (2001). 541549.CrossRefGoogle Scholar
Gedye, S.J., Jones, R.T., Tinner, W., Ammann, B., and Oldfield, F. The use of mineral magnetism in the reconstruction of fire history: a case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology 164, (2000). 101110.CrossRefGoogle Scholar
Grimm, E.C. A FORTRAN77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, (1987). 1335.CrossRefGoogle Scholar
Grimm, E.C., Lozano-García, S., Behling, H., and Markgraf, V. Holocene vegetation and climate variability in the Americas. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 325363.Google Scholar
Haberle, S.G., and Bennett, K.D. Postglacial formation and dynamics of North Patagonian Rainforest in the Chonos Archipelago, southern Chile. Quaternary Science Reviews 23, (2004). 24332452.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P.I., and Ariztegui, D. Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, (2003). 7078.CrossRefGoogle Scholar
Heusser, C.J. Pollen and spores of Chile. Modern Types of Pteridophyta, Gymnospermae, and Angiospermae. (1971). The University of Arizona Press, Tucson, USA. 167 pp. CrossRefGoogle Scholar
Heusser, C.J. Ice Age southern Andes: a chronicle of paleoecological events. Developments in Quaternary Science vol. 3, (2003). Elsevier, Amsterdam. 240 pp. Google Scholar
Huber, U.M., and Markgraf, V. European impact on fire regimes and vegetation dynamics at the steppe-forest ecotone of southern Patagonia. The Holocene 13, (2003). 567579.CrossRefGoogle Scholar
Huber, U.M., Markgraf, V., and Schäbitz, F. Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quaternary Science Reviews 23, (2004). 10791097.CrossRefGoogle Scholar
Irurzun, M.A., Gogorza, C.S.G., Chaparro, M.A.E., Lirio, J.M., Nuñez, H., Vilas, J.F., and Sinito, A.J. Paleosecular variations recorded by Holocene-Pleistocene sediments from Lake El Trébol (Patagonia, Argentina). Phys. Earth Planet. Inter. 154, (2006). 117.CrossRefGoogle Scholar
Jackson, B., (1996). Paleoenvironmental record from Lago Escondido, Rio Negro Province, Argentina. Master Thesis, University of Wisconsin, Madison. 138 p.Google Scholar
Kitzberger, T., and Veblen, T.T. Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia, Argentina. Ecoscience 4, (1997). 508520.CrossRefGoogle Scholar
Kitzberger, T., and Veblen, T.T. Fire-induced change in northern Patagonian landscapes. Landscape Ecology 14, (1999). 115.CrossRefGoogle Scholar
Kitzberger, T., and Veblen, T.T. Influences of climate on fire in northern Patagonia, Argentina. Veblen, T.T., Baker, W.L., Montenegro, G., and Swetnam, W.T. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. (2003). Springer, New York. 296321.Google Scholar
Kitzberger, T., Veblen, T.T., and Villalba, R. Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia, Argentina. Journal of Biogeography 24, (1997). 3547.CrossRefGoogle Scholar
Komárek, J., and Jankovská, V. Review of the green algal genus Pediastrum; implications for pollen-analytical research. Bibliotheca Psychologica 108, (2001). (127 pp.) Google Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., and Millspaugh, S.H. A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forest Research 28, (1998). 774787.CrossRefGoogle Scholar
Mancini, M.V., Paez, M.M., Prieto, A.R., Stutz, S., Tonello, M., and Vilanova, I. Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quaternary International 132, (2005). 4759.CrossRefGoogle Scholar
Markgraf, V. Late Pleistocene and Holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Dissertationes Botanicae 72, (1984). 235254.Google Scholar
Markgraf, V. Climatic history of Central and South America since 18,000 years BP: Comparison of pollen records and model simulations. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., and Bartlein, P.J. Global Climates Since the Last Glacial Maximum. (1993). University of Minnesota Press, Minneapolis. 357385.Google Scholar
Markgraf, V. Interhemispheric Climate Linkages: Present and Past Interhemispheric Climate Linkages in the Americas and their Societal Effects. (2001). Academic Press, New York, NY. 501 pp. Google Scholar
Markgraf, V., and Anderson, L. Fire history of Patagonia: climate versus human cause. Revista do Instituto Geografico do Sao Paulo 15, (1994). 3347.Google Scholar
Markgraf, V., and Bianchi, M.M. Paleoenvironmental changes during the last 17,000 years in western Patagonia: Mallin Aguado, Province of Neuquen, Argentina. Bamberger Geographische Schriften 19, (1999). 175193.Google Scholar
Markgraf, V., and D'Antoni, H.L. Pollen Flora of Argentina: Modern Pollen and Spore Types of Pteridophyta, Gymnospermae, and Angiospermae. (1978). University of Arizona Press, Tucson. 208 pp. Google Scholar
Markgraf, V., and Diaz, H.F. The past ENSO record: a synthesis. Diaz, H.F., and Markgraf, V. El Nino and the Southern Oscillation; Multiscale Variability and Global and Regional Impacts. (2000). Cambridge University Press, Cambridge. 465488.Google Scholar
Markgraf, V., McGlone, M., and Hope, G. Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—A southern perspective. Trends in Ecology and Evolution 10, (1995). 143147.CrossRefGoogle Scholar
Markgraf, V., Webb, R.S., Anderson, K.H., and Anderson, L. Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181, (2002). 375397.CrossRefGoogle Scholar
McGlone, M., Kershaw, P.A., and Markgraf, V. El Nino/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. Diaz, H.F., and Markgraf, V. El Nino, Historical and Paleoclimatic Aspects of the Southern Oscillation. (1992). Cambridge University Press, Cambridge, UK. 435462.Google Scholar
Moreno, P.I. Climate, fire, and vegetation between about 13,000 and 9200 14C yr BP in the Chilean Lake District. Quaternary Research 54, (2000). 8189.CrossRefGoogle Scholar
Moreno, P.I. Millennial-scale climate variability in northwest Patagonia during the last 15,000 yr. Journal of Quaternary Science 19, (2004). 3547.CrossRefGoogle Scholar
Moreno, P.I., and León, A.L. Abrupt vegetation changes during the last Glacial–Holocene transition in mid-latitude South America. Journal of Quaternary Science 18, (2003). 787800.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.J. Variability of El Nino/Southern Oscillation activity at millennial timescale during the Holocene epoch. Nature 420, (2002). 162165.CrossRefGoogle ScholarPubMed
New, M., Lister, D., Hulme, M., and Makin, I. A high-resolution data set of surface climate over global land areas. Climate Research 21, (2002). 125.CrossRefGoogle Scholar
Paez, M.M., Schäbitz, F., and Stutz, S. Modern pollen-vegetation and isopoll maps in southern Argentina. Journal of Biogeography 28, (2001). 9971021.CrossRefGoogle Scholar
Pastorino, M.J., and Gallo, L.A. Quaternary evolutionary history of Austrocedrus chilensis, a ciprés native to the Andean–Patagonian forest. Journal of Biogeography 29, (2002). 11671178.CrossRefGoogle Scholar
Rodbell, D.T., Enfield, D.B., Newman, J.H., Seltzer, G.O., Anderson, D.M., and Abbott, M.B. An ∼15,000-year record of El Nino-driven alluviation in southwestern Ecuador. Science 283, (1999). 516520.CrossRefGoogle ScholarPubMed
Rodó, X., and Rodriguez-Arias, M. El Nino-Southern oscillation: absent in the early Holocene?. Journal of Climate 17, (2004). 423426.2.0.CO;2>CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Reimer, R. W., (2005). CALIB 5.0.. [WWW program and documentation].Google Scholar
Tatur, A., Valle, R., Bianchi, M.M., Outes, V., Villarosa, G., Niegodzisz, J., and Debaene, G. Late Pleistocene palaeolakes in the Andean and Extra-Andean Patagonia at mid-latitudes of South America. Quaternary International 89, (2002). 135150.CrossRefGoogle Scholar
Valencio, D.A., Sinito, A.M., Creer, K.M., Mazzoni, M.M., Alouso, M.S., and Markgraf, V. Palaeomagnetism, sedimentology, radiocarbon age determinations and palynology of the Llao-Llao area, southwestern Argentina (lat. 41°S, long. 71°39′W): Palaeolimnological aspects. Rabassa, J. Quaternary of South America and Antarctic Peninsula Volume 3. (1985). A.A. Balkema, Boston. 109147.Google Scholar
Veblen, T.T., Kitzberger, T., and Lara, A. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. Journal of Vegetation Science 3, (1992). 507520.CrossRefGoogle Scholar
Veblen, T.T., Kitzberger, T., Raffaele, E., and Lorenz, D.C. Fire history and vegetation changes in northern Patagonia, Argentina. Veblen, T.T., Baker, W.L., Montenegro, G., and Swetnam, W.T. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. (2003). Springer, New York. 265295.Google Scholar
Villagrán, C., Moreno, P., and Villa, R. Antecedentes palinológicos acerca de la historia cuaternaria de los bosques chilenos. Armesto, J.J., Villagrán, C., and Arroyo, M.K. Ecología de los Bosques Nativos de Chile. (1996). Editorial Universitaria, Santiago, Chile. 5169.Google Scholar
Villalba, R., and Veblen, T.T. Spatial and temporal variation in tree growth along the forest-steppe ecotone in northern Patagonia. Canadian Journal of Forest Research 27, (1997). 580597.Google Scholar
Villarosa, G., Outes, V., Hajduk, A., Sellés, D., Fernández, M., Crivelli Montero, E., Crivelli, E., (2006). Explosive volcanism during the Holocene in the upper Limay river basin, northern Patagonia, Argentina: the effects of ashfalls on human societies. Quaternary International (in press).CrossRefGoogle Scholar
Whitlock, C., and Larsen, C.P.S. Charcoal as a Fire Proxy. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments: Volume 3 Terrestrial, Algal, and Siliceous Indicators. (2001). Kluwer Academic Publishers, Dordrecht. 7597.Google Scholar
Whitlock, C., and Millspaugh, S.H. Testing assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park. The Holocene 6, (1996). 715.CrossRefGoogle Scholar
Whitlock, C., Bartlein, P.J., Markgraf, V., and Ashworth, A.C. The mid-latitudes of North and South America during the Last Glacial Maximum and early Holocene: Similar paleoclimatic sequences despite differing large-scale controls. Markgraf, V. Interhemispheric Climate Linkages: Present and Past Interhemispheric Climate Linkages in the Americas and their Societal Effects. (2001). Academic Press, New York, NY. 391416.Google Scholar