Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:09:44.883Z Has data issue: false hasContentIssue false

Pleistocene–Holocene environmental change in the Canary Archipelago as inferred from the stable isotope composition of land snail shells

Published online by Cambridge University Press:  20 January 2017

Yurena Yanes*
Affiliation:
Huffington Department of Earth Sciences, Southern Methodist University, 3225 Daniel Ave., Rm 207 Heroy Hall, Dallas, TX 75275-0395, USA
Crayton J. Yapp
Affiliation:
Huffington Department of Earth Sciences, Southern Methodist University, 3225 Daniel Ave., Rm 207 Heroy Hall, Dallas, TX 75275-0395, USA
Miguel Ibáñez
Affiliation:
Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n., 38206 La Laguna, Tenerife, Canary Islands, Spain
María R. Alonso
Affiliation:
Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n., 38206 La Laguna, Tenerife, Canary Islands, Spain
Julio De-la-Nuez
Affiliation:
Departamento de Edafología y Geología, Facultad de Biología, Universidad de La Laguna, Avda.Astrofísico Fco. Sánchez s/n., 38206 La Laguna, Tenerife, Canary Islands, Spain
María L. Quesada
Affiliation:
Departamento de Edafología y Geología, Facultad de Biología, Universidad de La Laguna, Avda.Astrofísico Fco. Sánchez s/n., 38206 La Laguna, Tenerife, Canary Islands, Spain
Carolina Castillo
Affiliation:
Departamento de Biología Animal, Facultad de Biología, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n., 38206 La Laguna, Tenerife, Canary Islands, Spain
Antonio Delgado
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Camino del Jueves s/n, 18100 Armilla, Granada, Spain
*
Corresponding author. Fax: +1 214 768 2701.

Abstract

The isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Zarza, A.M., Genise, J.F., Cabrera, M.C., Mangas, J., Martín-Pérez, A., Valdeolmillos, A., and Dorado-Valiño, M. Megarhizoliths in Pleistocene aeolian deposits from Gran Canaria (Spain): ichnological and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 265, (2008). 3951.Google Scholar
Amundson, R., Chadwick, Ol., Kendall, C., Wang, Y., and DeNiro, M. Isotopic evidence for shifts in atmospheric circulation patterns during the late Quaternary in mid-North America. Geology 24, (1996). 2326.Google Scholar
Balakrishnan, M., and Yapp, C.J. Flux balance model for the oxygen and carbon isotope compositions of land snail shells. Geochimica Cosmochimica Acta 68, (2004). 20072024.Google Scholar
Balakrishnan, M., Yapp, C.J., Meltzer, D.J., and Theler, J.L. Paleoenvironment of the Folsom archaeological site, New Mexico, USA, approximately 10,500 14C yr B.P. as inferred from the stable isotope composition of fossil land snail shells. Quaternary Research 63, (2005). 3144.CrossRefGoogle Scholar
Balakrishnan, M., Yapp, C.J., Theler, J.L., Carter, B.J., and Wyckoff, D.G. Environmental significance of 13C/12C and 18O/16O ratios of modern land-snail shells from the southern Great Plains of North America. Quaternary Research 63, (2005). 1530.CrossRefGoogle Scholar
Baldini, L.M., Walker, S.E., Bruce, R., Baldini, J.U.L., and Crowe, D.E. Isotope ecology of the modern land snails Cerion, San Salvador, Bahamas: preliminary advances toward establishing a low-latitude island palaeoenvironmental proxy. Palaios 22, (2007). 174187.Google Scholar
Bard, E. Abrupt climate changes over millennial time scales: climate shock. Physics Today 55, (2002). 3238.Google Scholar
Brooke, B.P., Murray-Wallace, C.V., Woodroffe, C.D., and Heijnis, H. Quaternary aminostratigraphy of eolianite on Lord Howe Island, Southwest Pacific Ocean. Quaternary Science Reviews 22, (2003). 387406.CrossRefGoogle Scholar
Brooke, B.P., Woodroffe, C.D., Murray-Wallace, C.V., Heijnis, H., and Jones, B.G. Quaternary calcarenite stratigraphy on Lord Howe Island, southwestern Pacific Ocean and the record of coastal carbonate deposition. Quaternary Science Reviews 22, (2003). 859880.CrossRefGoogle Scholar
Coello, J., Cantagrel, J.M., Hernán, F., Fúster, J.M., Ibarrola, E., Ancochea, E., Casquet, C., Jamond, C., Díaz, J.R., and Cendrero, A. Evolution of the eastern volcanic ridge of the Canary Islands based on new K–Ar data. Journal of Volcanology and Geothermal Research 53, (1992). 251274.CrossRefGoogle Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., and Domenico, L.V. Stable isotope composition of late glacial land snail shells from Grotta del Romito (Southern Italy): paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 254, (2007). 550560.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., and Drysdale, R.N. Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene–Holocene archaeological record from Grotta della Serratura (Southern Italy): paleoclimatic implications. Global and Planetary Change 71, (2010). 249257.CrossRefGoogle Scholar
Cook, A. Behavioural ecology: on doing the right thing, in the right place at the right time. Barker, G.M. The Biology of Terrestrial Mollusk. (2001). CABI, 447487.Google Scholar
Cook, L.M., Goodfriend, G.A., and Cameron, R.A.D. Changes in the land snail fauna of eastern Madeira during the Quaternary. Philosophical Transactions:Biological Sciences 339, (1993). 83103.Google Scholar
Cowie, R.H. The life-cycle and productivity of the land snail Theba pisana (Mollusca: Helicidae). Journal of Animal Ecology 53, (1984). 311325.Google Scholar
Craig, H., and Gordon, L.I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere. Tongiogi, E. Proc. Stable Isotopes in Oceanographic Studies and Paleotemperatures, 1965, Spoleto, Italy. (1965). V. Lishi e F, Pisa. 9130.Google Scholar
Damnati, B., Petit-Maire, N., Fontugne, M., Meco, J., and Williamson, D. Quaternary paleoclimates in the eastern Canary Islands. Quaternary International 31, (1996). 3746.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clauson, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability in past climate from a 250 kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
Dansgaard, W., White, J.W.C., and Johnsen, S.J. The abrupt termination of the Younger Dryas climate event. Nature 339, (1989). 532533.CrossRefGoogle Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347361.CrossRefGoogle Scholar
Dorta, P. El clima. Rodríguez-Delgado, O. Patrimonio Natural de la isla de Fuerteventura. Cabildo de Fuerteventura, Gobierno de Canarias, Centro de la Cultura Popular Canaria. (2005). 8189.Google Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.CrossRefGoogle Scholar
Gasse, F., Chalie, F., Vincens, A., Williams, M.A.J., and Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews 27, (2008). 23162340.Google Scholar
Gasse, F., Tehet, R., Durand, A., Gibert, E., and Fontes, J.C. The arid-humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346, (1990). 141146.Google Scholar
Goodfriend, G.A. Variation in land-snail shell form and size and its causes: a review. Systematic Zoology 35, (1986). 204223.Google Scholar
Goodfriend, G.A. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29, (1987). 159167.CrossRefGoogle Scholar
Goodfriend, G.A. Holocene trends in 18O in land snail shells from the Negev Desert and their implications for changes in rainfall source areas. Quaternary Research 35, (1991). 417426.Google Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon isotope record of middle to late Holocene climate changes from land snail shells at Hinds Cave, Texas. Quaternary International 67, (2000). 4760.Google Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon and oxygen isotope variations in modern Rabdotus land snail shells in the southern Great Plains, USA, and their relation to environment. Geochimica Cosmochimica Acta 66, (2002). 19872002.CrossRefGoogle Scholar
Goodfriend, G.A., Cameron, R.A.D., Cook, L.M., Courty, M.A., Fedoroff, N., Livett, E., and Tallis, J. The Quaternary eolian sequence of Madeira: stratigraphy, chronology, and paleoenvironmental interpretation. Palaeogeography Palaeoclimatology Palaeoecology 120, (1996). 195234.Google Scholar
Goodfriend, G.A., Ellis, G.L., and Toolin, L.J. Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual and geographic patterns of variation. Radiocarbon 41, (1999). 149156.Google Scholar
Goodfriend, G.A., and Gould, S.J. Paleontology and chronology of two evolutionary transitions by hybridization in the Bahamian land snail Cerion. Science 274, (1996). 18941897.CrossRefGoogle ScholarPubMed
Goodfriend, G.A., and Hood, D.G. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25, (1983). 810830.CrossRefGoogle Scholar
Members, G.R.I.P. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, (1993). 203207.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552554.Google Scholar
Grossman, E.L., and Ku, T.L. Oxygen and carbon isotope fractionation in biogenic aragonite. Chemical Geology (Isotope Geosciences Section) 59, (1986). 5974.CrossRefGoogle Scholar
Hearty, P.J. Boulder deposits from large waves during the last interglaciation on North Eleuthera Island, Bahamas. Quaternary Research 48, (1997). 326338.Google Scholar
Hearty, P.J. Stratigraphy and timing of eolianite deposition on Rottnest Island, Western Australia. Quaternary Research 60, (2003). 211222.CrossRefGoogle Scholar
Hearty, P.J., and Kaufman, D.S. A high-resolution chronostratigraphy for the central Bahama Islands based on AMS 14C ages and amino acid ratios in wholerock and Cerion land snails. Quaternary Geochronology 4, (2009). 148159.CrossRefGoogle Scholar
Hearty, P.J., Olson, S.L., Kaufman, D.S., Edwards, R.L., and Cheng, H. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda. Quaternary Science Reviews 23, (2004). 11511171.CrossRefGoogle Scholar
Hillaire-Marcel, C., Ghaleb, B., Gariépy, C., Zazo, C., Hoyos, M., and Goy, J.L. U-series dating by the TIMS technique of land snails from paleosols in the Canary Islands. Quaternary Research 44, (1995). 276282.Google Scholar
Huntley, J.W., Yanes, Y., Kowalewski, M., Castillo, C., Delgado-Huertas, A., Ibáñez, M., Alonso, M.R., Ortiz, J.E., and Torres, T. Testing limiting similarity in Quaternary terrestrial gastropods. Paleobiology 34, (2008). 378388.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjörnsdóttir, A.E., White, J.W.C., Jouzel, J., and Fisher, D. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, (1997). 2639726410.Google Scholar
Jung, S.J.A., Davies, G.R., Ganssen, G.M., and Kroon, D. Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth and Planetary Science Letters 221, (2004). 2737.Google Scholar
Kehrwald, N.M., McCoy, W.D., Thibeault, J., Burns, S.J., and Oches, E.A. Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O. Quaternary Research 74, (2010). 166176.CrossRefGoogle Scholar
Koch, P.L., Diffenbaugh, N.S., and Hoppe, K.A. The effects of late Quaternary climate and pCO2 change on C4 plant abundance in the south-central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 207, (2004). 331357.Google Scholar
Kowalewski, M., and Bambach, R.K. The limits of paleontological resolution. Harries, P.J. High Resolution Approaches in Stratigraphic Paleontology: Topic in Geobiology Series v. 21, (2003). Plenum Press/Kluwer, New York. 148.Google Scholar
Lécolle, P. The oxygen isotope composition of land snail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chemical Geology 58, (1985). 157181.CrossRefGoogle Scholar
Leng, M.J., Heaton, T.H.E., Lamb, H.F., and Naggs, F. Carbon and oxygen isotope variations within the shell of an African land snail (Limicolaria kambeul chudeaui Germain): a high-resolution record of climate seasonality?. Holocene 8, (1998). 407412.CrossRefGoogle Scholar
Metref, S., Rousseau, D.D., Bentaleb, I., Labonne, M., and Vianey-Liaud, M. Study of the diet effect on δ13C of shell carbonate of the land snail Helix aspersa in experimental conditions. Earth and Planetary Science Letters 211, (2003). 381393.CrossRefGoogle Scholar
Méndez, M.P., (2001). Estudio ecofisiológico de las plantas C4 en el Archipiélago Canario. Unpublished Ph. D. thesis, La Laguna Univ. Spain, (in Spanish).Google Scholar
Méndez, M.P., Rodríguez-Delgado, O., Morales, D., and Jiménez, M.S. Catalogación y distribución de las plantas C4 presentes en la isla de Tenerife (Canarias): Parte I. Dicotyledoneae y Cyperaceae. Vieraea 20, (1991). 123156. (In Spanish with abstract in English) Google Scholar
Mora, G., and Pratt, L.M. Isotopic evidence for cooler and drier conditions in the tropical Andes during the last glacial stage. Geology 29, (2001). 519522.Google Scholar
Moreno, A., Targarona, J., Henderiks, J., Canals, M., Freudenthal, T., and Meggers, H. Orbital forcing of dust supply to the North Canary Basin over the last 250 kyr. Quaternary Science Reviews 20, (2001). 13271339.CrossRefGoogle Scholar
Ortiz, J.E., Torres, T., Yanes, Y., Castillo, C., De la Nuez, J., Ibáñez, M., and Alonso, M.R. Climatic cycles inferred from the aminostratigraphy and aminochronology of Quaternary dunes and palaeosols from the eastern islands of the Canary Archipelago. Journal of Quaternary Science 21, (2006). 287306.CrossRefGoogle Scholar
Petit-Maire, N., Delibrias, G., Pomel, S., and Rosso, J.C. Paleoclimatologie des Canaries orientales (Fuerteventura). Les Comptes Rendus de l'Académie des sciences II Paris 303, (1986). 12411246.Google Scholar
Plummer, L.N. Stable isotope enrichment in paleowaters of the Southeast Atlantic Coastal Plain, United States. Science 262, (1993). 20162020.Google Scholar
Reyes-Betancort, J.A., Wildpret, W., and León, M.C. The vegetation of Lanzarote (Canary Islands). Phytocoenologia 31, (2001). 185247.Google Scholar
Rodríguez-Delgado, O., Méndez, M.P., Morales, D., and Jiménez, M.S. Catalogación y distribución de las plantas C4 presentes en la isla de Tenerife (Canarias): Parte II. Poaceae. Vieraea 20, (1991). 157190.Google Scholar
Rognon, P., and Coudé-Gaussen, G. Origine eolienne de certains encroutements calcaires sur l'ile de Fuerteventura (Canaires orientales). Geoderma 42, (1988). 217293.Google Scholar
Rognon, P., and Coudé-Gaussen, G. Changements dans les circulations atmosphérique et océanique à la latitude des Canaries et du Maroc entre les stades isotopiques 2 et 1. Quaternaire 7, (1996). 197206.Google Scholar
Rognon, P., and Coudé-Gaussen, G. Paleoclimates off northwest Africa (28°–35°N) about 18,000 yr B.P. based on continental eolian deposits. Quaternary International 46, (1996). 118126.Google Scholar
Scholz, S. Las plantas vasculares. Catálogo Florístico. Rodríguez, O. Patrimonio natural de la isla de Fuerteventura. Cabildo de Fuerteventura. Consejería de Medio Ambiente y Ordenación Territorial del Gobierno de Canarias. Centro de la cultura popular Canaria. (2005). 241280. (in Spanish). Google Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., and McManus, J.F. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quaternary Science Reviews 21, (2002). 331342.CrossRefGoogle Scholar
Stott, L.D. The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Science Letters 195, (2002). 249259.CrossRefGoogle Scholar
Swezey, C. Eolian sediment responses to late Quaternary climate changes; temporal and spatial patterns in the Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology 167, (2001). 119155.Google Scholar
Wierzbowski, H. Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate. International Journal of Mass Spectrometry 268, (2007). 1629.Google Scholar
Williamson, D., Jackson, M., Banerjee, S.K., and Petit-Maire, N. The magnetism of a glacial aeolianite sequence from Lanzarote (Canary Islands): coupling between luvic calcisol formation and Saharan dust trapping processes during wet deposition events off northwestern Sahara. Geophysical Journal International 157, (2004). 10901104.CrossRefGoogle Scholar
Yanes, Y., (2003). Estudio paleobiológico de las asociaciones de gasterópodos terrestres de los Islotes al norte de Lanzarote.: Unpublished M.S. Thesis, La Laguna University, La Laguna., 139 p. (In Spanish).Google Scholar
Yanes, Y., (2005). Estudio paleobiológico de las asociaciones de gasterópodos terrestres de las islas orientales del Archipiélago Canario.: Unpublished Ph.D. Thesis, La Laguna University, La Laguna., 345 p. (In Spanish).Google Scholar
Yanes, Y., Delgado, A., Castillo, C., Alonso, M.R., Ibáñez, M., De la Nuez, J., and Kowalewski, M. Stable isotope (δ18O, δ13C, and δD) signatures of recent terrestrial communities from a low-latitude, oceanic setting: endemic land snails, plants, rain, and carbonate sediments from the eastern Canary Islands. Chemical Geology 249, (2008). 377392.Google Scholar
Yanes, Y., Kowalewski, M., Ortiz, J.E., Castillo, C., Torres, T., and Nuez, J. Scale and structure of time-averaging (age mixing) in terrestrial gastropod assemblages from Quaternary eolian deposits of the eastern Canary Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 251, (2007). 283299.Google Scholar
Yanes, Y., Tomašových, A., Kowalewski, M., Castillo, C., Aguirre, J., Alonso, M.R., and Ibáñez, M. Taphonomy and compositional fidelity of Quaternary fossil assemblages of terrestrial gastropods from carbonate-rich environments of the Canary Islands. Lethaia 41, (2008). 235256.Google Scholar
Yanes, Y., Romanek, C.S., Delgado, A., Brant, H.A., Noakes, J.E., Alonso, M.R., and Ibáñez, M. Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island. Geochimica et Cosmochimica Acta 73, (2009). 40774099.Google Scholar
Yapp, C.J. Oxygen and carbon isotope measurements of land snail shell carbonates. Geochimica Cosmochimica Acta 43, (1979). 629635.Google Scholar
Yapp, C.J., and Epstein, S. Climatic implications of D/H ratios of meteoric waters over the North America (9,500–22,000 kyr BP) as inferred from ancient wood cellulose C–H Hydrogen. Earth and Planetary Science Letters 34, (1977). 333350.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.CrossRefGoogle ScholarPubMed
Zhao, M., Beveridge, N.A.S., Shackleton, N.J., Sarnthein, M., and Eglinton, G. Molecular stratigraphy of cores off northwest Africa: sea surface temperature history over the last 80 ka. Paleoceanography 10, (1995). 661675.Google Scholar
Zanchetta, G., Leone, G., Fallick, A.E., and Bonadonna, F.P. Oxygen isotope composition of living land snail shells: data from Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 223, (2005). 2033.Google Scholar
ZongXiu, L., ZhaoYan, G., NaiQin, W., and Bing, X. Diet control on carbon isotopic composition of land snail shell carbonate. Chinese Science Bulletin 52, (2007). 388394.Google Scholar
Supplementary material: PDF

Yanes et al. Supplementary Material

Supplementary Material

Download Yanes et al. Supplementary Material(PDF)
PDF 1.4 MB