Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T05:17:39.002Z Has data issue: false hasContentIssue false

Planktonic Foraminiferal and Alkenone Records of the Last Deglaciation from the Eastern Arabian Sea

Published online by Cambridge University Press:  20 January 2017

Olivia Cayre
Affiliation:
CEREGE, Université Aix-Marseille III et CNRS-UMR-6635, Europôle de l'Arbois, B.P. 80, 13545, Aix en Provence, Cedex 4, France. E-mail: [email protected], [email protected]
Edouard Bard
Affiliation:
CEREGE, Université Aix-Marseille III et CNRS-UMR-6635, Europôle de l'Arbois, B.P. 80, 13545, Aix en Provence, Cedex 4, France. E-mail: [email protected], [email protected]

Abstract

The oxygen isotope record of planktonic foraminifera from tropical core MD77194 (Eastern Arabian Sea) exhibits a clear two-step deglaciation with a brief δ18O transient event. In the tropics, this δ18O maximum could correspond to a cooling or to a change in the δ18O content of sea water. In this study, past sea-surface temperature (SST) and primary production (PP) are reconstructed from foraminiferal transfer functions and compared to values estimated from alkenone measurements. SST and PP records from both proxies indicate a 1.5–2.5°C deglacial warming, coupled with a PP decrease, and a 0.5–1°C cooling during the Younger Dryas (YD). A detailed comparison between independent micropaleontological and geochemical proxies helps us identify potential biases and thus strengthen the paleo-reconstructions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.M., Prell, L.W. (1993). A 300 kyr record of upwelling off Oman during the late Quaternary: Evidence of the Asian Southwest Monsoon. Paleoceanography. 8, 193208.Google Scholar
Anderson, D.M., Thunell, L.W. (1993). The oxygen-isotope composition of tropical ocean surface water during the last deglaciation. Quaternary Science Reviews. 12, 465473.Google Scholar
Antoine, D., André, J.M., Morel, A. (1996). Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles. 10, 5796.Google Scholar
Bard, E. (1998). Geochemical and geophysical implications of the radiocarbon calibration. Geochimica Cosmochimica Acta. 62, 20252038.Google Scholar
Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J., Duplessy, J.C. (1987). Retreat velocity of the North Atlantic polar front during the last deglaciation determined by accelerator mass spectrometry. Nature. 328, 791794.Google Scholar
Bard, E., Rostek, F., Sonzogni, C. (1997). Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature. 385, 707710.Google Scholar
Cayre, O., Beaufort, L., Vincent, E. (1999). Paleoproductivity in the equatorial Indian Ocean for the last 260,000 yr: A transfer function based on planktonic foraminifera. Quaternary Science Reviews. 18, 839857.Google Scholar
Chapman, M.R., Shackleton, N.J., Zao, M., Eglinton, G. (1996). Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr. Paleoceanography. 11, 343357.Google Scholar
Clemens, S., Prell, W.L. (1990). Late Pleistocene variability of Arabian Sea Summer Monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography. 5, 109145.Google Scholar
Conte, M.H., Thompson, A., Lesley, D., Harris, R.P. (1998). Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica . Geochimica Cosmochimica Acta. 62, 5168.Google Scholar
Duplessy, J.C. (1982). Glacial to interglacial contrasts in the northern Indian Ocean. Nature. 295, 494498.Google Scholar
Duplessy, J.C., Bard, E., Arnold, M., Shackleton, N.J., Duprat, J., Labeyrie, L.D. (1991). How fast did the ocean-atmosphere system run during the last deglaciation?. Earth and Planetary Science Letters. 103, 2740.CrossRefGoogle Scholar
Duplessy, J.C., , A.W.H., Blanc, P.L. (1981). Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology. 33, 946.Google Scholar
Flower, B.P., Kennett, J.P. (1990). The Younger Dryas cool episode in the Gulf of Mexico. Paleoceanography. 5, 949961.CrossRefGoogle Scholar
Fontugne, M.R., Duplessy, J.C. (1986). Variation of the Monsoon regime during the upper Quaternary: Evidence from carbon isotopic record of organic matter in North Indian Ocean sediment cores. Palaeogeography, Palaeoclimatology, Palaeoecology. 56, 6988.Google Scholar
Hemleben, Ch., Spindler, M., Anderson, O.R. (1988). Modern Planktonic Foraminifera. Springer-Verlag, New York.Google Scholar
Hutson, W.H. (1979). The Agulhas Current during the late Pleistocene: Analysis of modern faunal analogs. Science. 207, 6466.Google Scholar
Keigwin, L.D., Jones, G.A. (1990). Deglacial climate oscillations in the Gulf of California. Paleoceanography. 5, 10091024.Google Scholar
Koc-Karpuz, N., Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes. Paleoceanography. 7, 499520.CrossRefGoogle Scholar
Kudrass, H.R., Erlenkeuser, H., Volbrecht, R., Weiss, W. (1991). Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea core. Nature. 349, 406409.Google Scholar
Levitus, S. (1994). World Ocean Atlas.Google Scholar
Linsley, B.K., Thunell, R.C. (1990). The record of deglaciation in the Sulu Sea: Evidence for the Younger Dryas Event in the tropical Western Pacific. Paleoceanography. 5, 10251040.Google Scholar
Nair, R.R., Ittekkot, V., Manganini, S.J., Ramaswamy, V., Haake, B., Degens, E.T., Desai, B.N., Honjo, S. (1989). Increased particle flux to the deep ocean related to monsoons. Nature. 338, 749751.CrossRefGoogle Scholar
Prahl, F.G., Muehlhausen, L.A., Zahnle, D. (1988). Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica Cosmochimica Acta. 52, 23032310.CrossRefGoogle Scholar
Prahl, F.G., Wakeham, S.G. (1987). Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature. 330, 367369.CrossRefGoogle Scholar
Prell, W. L. (1985). The Stability of Low-Latitude Sea-Surface Temperatures: An Evaluation of the CLIMAP Reconstruction with Emphasis on the Positive SST Anomalies, Technical Report, U.S. Dept. of Energy, 60, pp, Brown University, Dept. of Applied Sciences.Google Scholar
Ramaswamy, V., Nair, R.R. (1994). Fluxes of material in the Arabian Sea and Bay of Bengal—Sediment trap studies. In Biochemistry of the Arabian Sea. Lal, D. 91112. Indian Academy of Sciences, .Google Scholar
Rostek, F., Bard, E., Beaufort, L., Sonzogni, C., Ganssen, G. (1997). Sea surface temperature and productivity records for the past 240 kyr in the Arabian Sea. Deep Sea Research 2. 44, 14611480.Google Scholar
Ruddiman, W.F., McIntyre, A. (1981). The north Atlantic during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology. 35, 145214.Google Scholar
Sastry, J.S., d'Souza, R.S. (1972). Upwelling and upward mixing in the Arabian Sea. Indian Journal of Marine Sciences. 1, 1727.Google Scholar
Sharma, G.S. (1978). Upwelling off the Southwest Coast of India. Indian Journal of Marine Sciences. 7, 209218.Google Scholar
Sikes, E., Keigwin, L.D. (1994). Equatorial Atlantic sea surface temperature for the last 30 kyr: A comparison of UK37 , δ18O and foraminiferal assemblage estimates. Paleoceanography. 9, 3145.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C. (1993). Century-scale events in monsoonal climate over the past 24,000 year. Nature. 364, 322324.Google Scholar
Sonzogni, C., Bard, E., Rostek, F., Dollfus, D., Rosell-Melé, A., Eglinton, G. (1997). Temperature and salinity effects on alkenone ratios measured in surface sediments from the Indian Ocean. Quaternary Research. 47, 344355.Google Scholar
Sonzogni, C., Bard, E., Rostek, F. (1998). Tropical sea surface temperatures during the last glacial period: A view based on alkenones in Indian Ocean sediments. Quaternary Science Reviews. 17, 11851201.Google Scholar
Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., Clow, G.D. (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science. 282, 9295.Google Scholar
Thunell, R.C., Miao, Q. (1996). Sea surface temperature of the Western Equatorial Pacific Ocean during Younger Dryas. Quaternary Research. 46, 7277.CrossRefGoogle Scholar
Uerpmann, H.P. (1991). Radiocarbon of shell middens in the Sultanate of Oman. PACT. 29, 335347.Google Scholar
Woodruff, S.D., Slutz, R.J., Jenne, R.L., Steurer, P.M. (1987). A Comprehensive Ocean–Atmosphere Data Set. Bulletin of the American Meteorological Society. 68, 12391250.Google Scholar
Wyrtki, K. (1971). Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, Washington.Google Scholar